http://iet.metastore.ingenta.com
1887

Shadow filters based on DDCC

Shadow filters based on DDCC

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a new realisation of voltage-mode shadow filters based on low-voltage low-power differential difference current conveyor (DDCC). Thanks to the attractive features of the DDCC, including its capability of performing arithmetic operations, the proposed filters offer the advantage of circuit simplicity, minimum number of active and passive elements, and no need for additional summing circuit, compared to the previous available shadow filter designs. The DDCC was designed and fabricated in Cadence platform using 0.35 μm CMOS AMIS process with supply voltage and power consumption of 1 V and 37 µW, respectively. The presented simulation and experimental results using a real chip validate the functionality of the proposed filters.

References

    1. 1)
      • 1. Lakys, Y., Fabre, A.: ‘Shadow filters: new family of second-order filters’, Electron. Lett., 2010, 46, pp. 276277.
    2. 2)
      • 2. Biolkova, V., Biolek, D.: ‘Shadow filters for orthogonal modification of characteristic frequency and bandwidth’, Electron. Lett., 2010, 46, pp. 830831.
    3. 3)
      • 3. Lakys, Y., Fabre, A.: ‘Shadow filters generalization to nth-class’, Electron. Lett., 2010, 46, pp. 985986.
    4. 4)
      • 4. Lakys, Y., Fabre, A.: ‘A fully active frequency agile filter for multistandard transceivers’. Proc. Int. Conf. Applied Electronics, 2011, p. 7.
    5. 5)
      • 5. Lakys, Y., Fabre, A.: ‘Multistandard transceivers: state of the art and a new versatile implementation for fully active frequency agile filters’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 6378.
    6. 6)
      • 6. Lakys, Y., Fabre, A.: ‘Encrypted communications: towards very low consumption frequency-hopping active filters’, Analog Integr. Circuits Signal Process., 2014, 81, pp. 516.
    7. 7)
      • 7. Lakys, Y., Godara, B., Fabre, A.: ‘Cognitive and encrypted communications: state of the art and a new approach for frequency-agile filters’, Turk. J. Electr. Eng. Comput. Sci., 2011, 19, pp. 251273.
    8. 8)
      • 8. Pandey, N., Sayal, A., Choudhary, R., et al: ‘Design of CDTA and VDTA based frequency agile filters’, Adv. Electron., 2014, doi: 10.1155/2014/176243.
    9. 9)
      • 9. Rami, R., Alami, M., Temcamani, F., et al: ‘Low power agile active filter with digitally controlled center-frequency’. Proc. Int. Conf. Multimedia Computing and Systems, 2014, pp. 15281534.
    10. 10)
      • 10. Pandey, N., Pandey, R., Choudhary, R., et al: ‘Realization of CDTA based frequency agile filter’, IEEE Int. Conf. Signal Processing, Computing and Control (ISPCC), 2013, pp. 16.
    11. 11)
      • 11. Atasoyu, M., Kuntman, H., Metin, B., et al: ‘Design of current-mode class 1 frequency-agile filter employing CDTAs’, European Conf. Circuit Theory and Design (ECCTD), 2015, pp. 14.
    12. 12)
      • 12. Dutta Roy, S. C.: ‘‘Shadow’ filters: a new family of electronically tunable filters’, IETE J. Educ., 2010, 51, pp. 7578.
    13. 13)
      • 13. Abuelma'atti, M. T., Almutairi, N. R.: ‘New current-feedback operational-amplifier based shadow filters, analog integr’, Circuit Signal Process., 2016, 86, pp. 471480, DOI: 10.1007/s10470-016-0691-7.
    14. 14)
      • 14. Abuelma'atti, M. T., Almutairi, N.: ‘New voltage-mode bandpass shadow filter’. 13th Int. Multi-Conf. Systems, Signals & Devices (SSD), 2016, pp. 412415.
    15. 15)
      • 15. Abuelma'atti, M. T., Almutairi, N.: ‘New CFOA-based shadow bandpass filter’. Int. Conf. Electronics, Information, and Communications (ICEIC), 2016, pp. 13.
    16. 16)
      • 16. Anurag, R., Pandey, R., Pandey, N., et al: ‘OTRA based shadow filters’. Annual IEEE India Conf. (INDICON), 2015, pp. 14.
    17. 17)
      • 17. Khateb, F.: ‘Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage low-power analog circuits design’, AEU Electron. Commun. J., 2014, 68, pp. 6472, doi: 10.1016/j.aeue.2013.08.019.
    18. 18)
      • 18. Khateb, F.: ‘The experimental results of the bulk-driven quasi-floating-gate MOS transistor’, AEU Electron. Commun. J., 2015, 69, pp. 462466, doi: 10.1016/j.aeue.2014.10.016.
    19. 19)
      • 19. Khateb, F., Kubánek, D., Tsirimokou, G., et al: ‘Fractional-order filters based on low-voltage DDCCs’, Microelectron. J., 2016, 50, pp. 5059.
    20. 20)
      • 20. Kubánek, D., Khateb, F., Tsirimokou, G., et al: ‘practical design and evaluation of fractional-order oscillator using differential voltage current conveyors’, Circuits Syst. Signal Process., 2016, 35, pp. 20032016.
    21. 21)
      • 21. Khateb, F., Kumngern, M., Kulej, T.: ‘1-V inverting and non-inverting loser-take-all circuit and its applications’, Circuits Syst. Signal Process., 2016, 35, pp. 15071529.
    22. 22)
      • 22. Khateb, F., Vlassis, S., Kumngern, M., et al: ‘1 V rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers’, Circuits Syst. Signal Process., 2015, 34, pp. 20772089, doi: 10.1007/s00034-014-9958-3.
    23. 23)
      • 23. Khateb, F., Lahiri, A., Psychalinos, C., et al: ‘Digitally programmable low-voltage highly linear transconductor based on promising CMOS structure of differential difference current conveyor’, AEU - Int. J. Electron. Commun., 2015, 69, pp. 10101017.
    24. 24)
      • 24. Soliman, A. M.: ‘Generation and classification of Kerwin–Huelsman–Newcomb circuits using the DVCC’, Int. J. Circuit Theory Appl., 2008, 37, pp. 835855.
    25. 25)
      • 25. Chiu, W., Liu, S. I., Tsao, H. W., et al: ‘CMOS differential difference current conveyors and their applications’. IEE Proc. Circuits, Devices and System, 1996, pp. 9196.
    26. 26)
      • 26. Chen, H. P.: ‘Universal voltage-mode filter using only plus-type DDCCs’, Analog Integr. Circuits Signal Process., 2007, 50, pp. 137139.
    27. 27)
      • 27. Chen, H. P., Wu, K. H.: ‘Single DDCC-based voltage-mode multifunction filter’, IEICE Trans. Fund., 2007, E90-A, pp. 20292031.
    28. 28)
      • 28. Chiu, W. Y., Horng, J. W.: ‘High-input and low-output impedance voltage-mode universal biquadratic filter using DDCCs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2007, 54, pp. 649652.
    29. 29)
      • 29. Horng, J.-W.: ‘High input impedance voltage-mode universal biquadratic filter with three inputs using DDCCs’, Circuits Syst. Signal Process., 2008, 27, pp. 553562.
    30. 30)
      • 30. Chen, H. P.: ‘Versatile universal voltage-mode filter employing DDCCs’, Int. J. Electron. Commun., 2009, 63, pp. 7882.
    31. 31)
      • 31. Ibrahim, M. A., Kuntman, H., Cicekoglu, O.: ‘Single DDCC biquads with high input impedance and minimum number of passive elements’, Analog Integr. Circuits Signal Process., 2005, 43, pp. 7179.
    32. 32)
      • 32. Chiu, W.-Y., Horng, J.-W.: ‘Voltage-mode highpass, bandpass, lowpass and notch biquadratic filters using single DDCC’, Radioengineering, 2012, 21, (1), pp. 297303.
    33. 33)
      • 33. Lee, W-T., Liao, Y-Z.: ‘New voltage-mode high-pass, band-pass and low-pass filter using DDCC and OTAs’, AEU - Int. J. Electron. Commun., 2008, 62, (9), pp. 701704.
    34. 34)
      • 34. Khateb, F., Kumngern, M., Vlassis, S., et al: ‘Differential difference current conveyor using bulk-driven technique for ultra-low-voltage applications’, Circuits Syst. Signal Process., 2014, 33, pp. 159176, doi: 10.1007/s00034-013-9619-y.
    35. 35)
      • 35. Khateb, F., Jaikla, W., Kumngem, M., et al: ‘Comparative study of sub-volt differential difference current conveyors’, Microelectron. J., 2013, 44, pp. 12781284, 2013, doi: 10.1016/j.mejo.2013.08.015.
    36. 36)
      • 36. Prommee, P., Somdunyakanok, M.: ‘CMOS-based current-controlled DDCC and its applications to capacitance multiplier and universal filter’, AEU - Int. J. Electron. Commun., 2011, 65, (1), pp. 18.
    37. 37)
      • 37. Hwang, Y. S., Liu, A., Wang, S. F., et al: ‘A tunable Butterworth low-pass filter with digitally controlled DDCC’. Radioengineering, 2013, 22, (2), pp. 511517.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0522
Loading

Related content

content/journals/10.1049/iet-cds.2016.0522
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address