http://iet.metastore.ingenta.com
1887

Analytic cascaded filterbanks for multicarrier modulation

Analytic cascaded filterbanks for multicarrier modulation

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Filterbank multicarrier has been proposed as an alternative to rthogonal frequency division multiplexing (OFDM). A uniform Discrete Fourier Transform (DFT) transmultiplexer cannot have maximum packing efficiency while using slowly decaying pulses. Maximally decimated filterbanks and transmultiplexers can be used interchangeably. Designing a filterbank with large number of independent filters can be a tedious job. So, wavelet packets have been tried as a basis for multicarrier modulation. However, real wavelet packets have energy on both sides of the spectrum, making the use of a single tap equalisation and usage of water-filling algorithm difficult. The authors propose a cascade of filterbanks which produce nearly analytic waveforms. They also design a class of 3-band filterbanks whose high-pass filters are structurally complex conjugate pairs, which reduce the complexity of the design. A 5-band filterbank is also designed with similar properties and a hybrid cascade of filterbanks is also investigated. The performance of the cascade and hybrid cascade through a wireless channel is compared with OFDM without cyclic prefix and Daubechies wavelet packets. In highly frequency selective channels, the proposed cascaded filterbank design outperforms OFDM without cyclic prefix and Daubechies wavelet packets in terms of error rate.

References

    1. 1)
      • 1. Tse, D., Viswanath, P.: ‘Fundamentals of wireless communication’ (Cambridge University Press, 2005).
    2. 2)
      • 2. Farhang Boroujeny, B.: ‘OFDM versus filter bank multicarrier’, IEEE Signal Process. Mag., 2011, 28, (3), pp. 92112.
    3. 3)
      • 3. Bellanger, M., Le Ruyet, D., Roviras, D., et al: ‘FBMC physical layer: a primer’. PHYDYAS, January 2010.
    4. 4)
      • 4. He, X., Zhao, Z., Zhang, H.: ‘A pilot-aided channel estimation method for FBMC/OQAM communications system’. 2012 Int. Symp. Communications and Information Technologies (ISCIT), 2012, pp. 175180.
    5. 5)
      • 5. Ndo, G., Lin, H., Siohan, P.: ‘FBMC/OQAM equalization: exploiting the imaginary interference’. 2012 IEEE 23rd Int. Symp. Personal Indoor and Mobile Radio Communications (PIMRC), 2012, pp. 23592364.
    6. 6)
      • 6. Tabatabaee, S.M.J.A., Zamiri Jafarian, H.: ‘Per-subchannel joint equalizer and receiver filter design in OFDM/OQAM systems’, IEEE Trans. Signal Process., 2016, 64, (19), pp. 50945105.
    7. 7)
      • 7. Fettweis, G., Krondorf, M., Bittner, S.: ‘GFDM-generalized frequency division multiplexing’. IEEE 69th Vehicular Technology Conf., 2009, VTC Spring 2009, 2009, pp. 14.
    8. 8)
      • 8. Bellanger, M., Mattera, D., Tanda, M.: ‘A filter bank multicarrier scheme running at symbol rate for future wireless systems’. Wireless Telecommunications Symp. (WTS), 2015, 2015, pp. 15.
    9. 9)
      • 9. Bellanger, M., Mattera, D., Tanda, M.: ‘Lapped-OFDM as an alternative to CP-OFDM for 5G asynchronous access and cognitive radio’. 2015 IEEE 81st Vehicular Technology Conf. (VTC Spring), 2015, pp. 15.
    10. 10)
      • 10. Abdoli, J., Jia, M., Ma, J.: ‘Filtered OFDM: a new waveform for future wireless systems’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 6670.
    11. 11)
      • 11. Berardinelli, G., Tavares, F.M., Sorensen, T.B., et al: ‘On the potential of zero-tail DFT-spread-OFDM in 5G networks’. 2014 IEEE 80th Vehicular Technology Conf. (VTC Fall), 2014, pp. 16.
    12. 12)
      • 12. Berardinelli, G., Pedersen, K.I., Sorensen, T.B., et al: ‘Generalized DFT-spread-OFDM as 5G waveform’, IEEE Commun. Mag., 2016, 54, (11), pp. 99105.
    13. 13)
      • 13. Sahin, A., Yang, R., Bala, E., et al: ‘Flexible DFT-S-OFDM: solutions and challenges’, IEEE Commun. Mag., 2016, 54, (11), pp. 106112.
    14. 14)
      • 14. Kumar, U., Ibars, C., Bhorkar, A., et al: ‘A waveform for 5G: guard interval DFT-S-OFDM’. 2015 IEEE Globecom Workshops (GC Wkshps), 2015, pp. 16.
    15. 15)
      • 15. Schaich, F., Wild, T., Chen, Y.: ‘Waveform contenders for 5G-suitability for short packet and low latency transmissions’. 2014 IEEE 79th Vehicular Technology Conf. (VTC Spring), 2014, pp. 15.
    16. 16)
      • 16. Schaich, F., Wild, T.: ‘Subcarrier spacing – a neglected degree of freedom?’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 5660.
    17. 17)
      • 17. Schaich, F., Wild, T., Ahmed, R.: ‘Subcarrier spacing – how to make use of this degree of freedom’. 2016 IEEE 83rd. Vehicular Technology Conf. (VTC Spring), 2016, pp. 16.
    18. 18)
      • 18. Kim, C., Kim, K., Yun, Y.H., et al: ‘QAM–FBMC: a new multi-carrier system for post-OFDM wireless communications’. 2015 IEEE Global Communications Conf. (GLOBECOM), 2015, pp. 16.
    19. 19)
      • 19. Kim, C., Yun, Y.H., Kim, K., et al: ‘Introduction to QAM–FBMC: from waveform optimization to system design’, IEEE Commun. Mag., 2016, 54, (11), pp. 6673.
    20. 20)
      • 20. Yun, Y.H., Kim, C., Kim, K., et al: ‘A new waveform enabling enhanced QAM–FBMC systems’. 2015 IEEE 16th Int. Workshop Signal Processing Advances in Wireless Communications (SPAWC), 2015, pp. 116120.
    21. 21)
      • 21. Lin, H.: ‘Flexible configured OFDM for 5G air interface’, IEEE Access, 2015, 3, pp. 18611870.
    22. 22)
      • 22. Zaidi, A.A., Baldemair, R., Tullberg, H., et al: ‘Waveform and numerology to support 5G services and requirements’, IEEE Commun. Mag., 2016, 54, (11), pp. 9098.
    23. 23)
      • 23. Zhang, X., Chen, L., Qiu, J., et al: ‘On the waveform for 5G’, IEEE Commun. Mag., 2016, 54, (11), pp. 7480.
    24. 24)
      • 24. Banelli, P., Buzzi, S., Colavolpe, G., et al: ‘Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: an overview of alternative modulation schemes for improved spectral efficiency’, IEEE Signal Process. Mag., 2014, 31, (6), pp. 8093.
    25. 25)
      • 25. Wunder, G., Kasparick, M., Jung, P.: ‘Interference analysis for 5G random access with short message support’. European Wireless 2015; 21st European Wireless Conf.; Proc. VDE, 2015, pp. 16.
    26. 26)
      • 26. Wunder, G., Kasparick, M., Jung, P., et al: ‘New physical-layer waveforms for 5G’, in Towards 5G: Applications, Requirements and Candidate Technologies, (John Wiley & Sons, Ltd, Chichester, UK, 2016), pp. 303341, doi: 10.1002/9781118979846. ch14.
    27. 27)
      • 27. Wunder, G., Boche, H., Strohmer, T., et al: ‘Sparse signal processing concepts for efficient 5G system design’, IEEE Access, 2015, 3, pp. 195208.
    28. 28)
      • 28. Ibars, C., Kumar, U., Niu, H., et al: ‘A comparison of waveform candidates for 5G millimeter wave systems’. 2015 49th Asilomar Conf. Signals, Systems and Computers IEEE, 2015, pp. 17471751.
    29. 29)
      • 29. Andrews, J.G., Buzzi, S., Choi, W., et al: ‘What will 5G be?’, IEEE J. Sel. Areas Commun., 2014, 32, (6), pp. 10651082.
    30. 30)
      • 30. Farhang Boroujeny, B., Moradi, H.: ‘OFDM inspired waveforms for 5G’, IEEE Commun. Surv. Tutor., 2016, 18, (4), pp. 24742492.
    31. 31)
      • 31. Shaeen, K., Elias, E.: ‘Prototype filter design approaches for near perfect reconstruction cosine modulated filter banks – a review’, J. Signal Process. Syst., 2015, 81, (2), pp. 183195.
    32. 32)
      • 32. Jamin, A., Mähönen, P.: ‘Wavelet packet modulation for wireless communications’, Wirel. Commun. Mob. Comput., 2005, 5, (2), pp. 123137.
    33. 33)
      • 33. Vetterli, M.: ‘Perfect transmultiplexers’. IEEE Int. Conf. ICASSP'86 Acoustics, Speech, and Signal Processing, 1986, vol. 11, pp. 25672570.
    34. 34)
      • 34. Vaidyanathan, P.P.: ‘Multirate systems and filter banks’ (Pearson Education India, 1993).
    35. 35)
      • 35. Bayram, I., Selesnick, I.W.: ‘On the dual-tree complex wavelet packet and m-band transforms’, IEEE Trans. Signal Process., 2008, 56, (6), pp. 22982310.
    36. 36)
      • 36. Selesnick, I.W., Baraniuk, R.G., Kingsbury, N.C.: ‘The dual-tree complex wavelet transform’, IEEE Signal Process. Mag., 2005, 22, (6), pp. 123151.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0509
Loading

Related content

content/journals/10.1049/iet-cds.2016.0509
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address