http://iet.metastore.ingenta.com
1887

OTFTs compact models: analysis, comparison, and insights

OTFTs compact models: analysis, comparison, and insights

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

It is challenging to develop a physically based compact model for an organic thin-film transistor (OTFT). Moreover, there is still a lack of a universal model that would cover the huge variety of materials and device structures available for state-of-the-art OTFTs. Different models of charge transport phenomenon in organic semiconductors are briefly explained, since such phenomenon constitutes the basis of a physically based compact model of an OTFT. An introduction to the basic principles dictated on compact models suitable for Computer Aided Design (CAD) simulators is stated. Six reported models are presented and analysed with an emphasis on their primary assumptions and applicability aspects. Furthermore, the selected compact models are compared with experimental results provided by a fabricated OTFT. Finally, the authors conclude recommendations for advancing OTFT compact modelling in order to reach a more enhanced model that could characterise most recently reported OTFTs.

References

    1. 1)
      • 1. Kumar, B., Kaushik, B.K., Negi, Y.S.: ‘Organic thin film transistors: structures, models, materials, fabrication, and applications: a review’, Polym. Rev., 2014, 54, pp. 33111.
    2. 2)
      • 2. Mittal, P., Kumar, B., Negi, Y.S., et al: ‘Organic thin film transistor architecture, parameters and their applications’. Proc. – 2011 Int. Conf. on Communication Systems and Network Technologies, CSNT 2011, 2011, pp. 436440.
    3. 3)
      • 3. Gelinck, G., Heremans, P., Nomoto, K., et al: ‘Organic transistors in optical displays and microelectronic applications’, Adv. Mater., 2010, 22, (34), pp. 37783798.
    4. 4)
      • 4. Ramon i Garcia, E.: ‘Inkjet printed microelectronic devices and circuits’ (Universitat Autonoma de Barcelona (UAB), 2014).
    5. 5)
      • 5. Klauk, H.: ‘Organic thin-film transistors’, Chem. Soc. Rev., 2010, 39, (7), p. 2643.
    6. 6)
      • 6. Sekitani, T., Nakajima, H., Maeda, H., et al: ‘Stretchable active-matrix organic light-emitting diode display using printable elastic conductors’, Nat. Mater., 2009, 8, (6), pp. 494499.
    7. 7)
      • 7. Steudel, S., Myny, K., Schols, S., et al: ‘Design and realization of a flexible QQVGA AMOLED display with organic TFTs’, Org. Electron. Phys. Mater. Appl., 2012, 13, (9), pp. 17291735.
    8. 8)
      • 8. Li, F.M., Nathan, A., Wu, Y., et al: ‘Organic thin film transistor integration’ (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011).
    9. 9)
      • 9. Kaltenbrunner, M., Sekitani, T., Reeder, J., et al: ‘An ultra-lightweight design for imperceptible plastic electronics’, Nature, 2013, 499, (7459), pp. 458463.
    10. 10)
      • 10. Drury, C.J., Mutsaers, C.M.J., Hart, C.M., et al: ‘Low-cost all-polymer integrated circuits’, Appl. Phys. Lett., 1998, 108, pp. 108110.
    11. 11)
      • 11. Baeg, K.J., Khim, D., Kim, J., et al: ‘High-performance top-gated organic field-effect transistor memory using electrets for monolithic printed flexible nand flash memory’, Adv. Funct. Mater., 2012, 22, (14), pp. 29152926.
    12. 12)
      • 12. Raiteri, D., Cantatore, E., Van Roermund, A.H.M.: ‘Circuit design on plastic foils’ (Springer International Publishing, New York, 2015, 1st edn.), vol. 1.
    13. 13)
      • 13. Carta, F., Hsu, Y.J., Sarik, J., et al: ‘Bimorph actuator with monolithically integrated CMOS OFET control’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 286290.
    14. 14)
      • 14. Myny, K., Steudel, S., Smout, S., et al: ‘Organic RFID transponder chip with data rate compatible with electronic product coding’, Org. Electron. Phys. Mater. Appl., 2010, 11, (7), pp. 11761179.
    15. 15)
      • 15. Cantatore, E., Geuns, T.C.T., Gelinck, G.H., et al: ‘A 13.56 MHz RFID system based on organic transponders’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 8492.
    16. 16)
      • 16. Fiore, V., Battiato, P., Abdinia, S., et al: ‘An integrated 13.56 MHz RFID tag in a printed organic complementary TFT technology on flexible substrate’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (6), pp. 16681678.
    17. 17)
      • 17. Minemawari, H., Yamada, T., Matsui, H., et al: ‘Inkjet printing of single-crystal films’, Nature, 2011, 475, (7356), pp. 364367.
    18. 18)
      • 18. Zhou, J., Ge, T., Ng, E., et al: ‘Fully additive low-cost printed electronics with very low process variations’, IEEE Trans. Electron Devices, 2016, 63, (2), pp. 793799.
    19. 19)
      • 19. Shur, M., Jacunski, M., Slade, H.C., et al: ‘Analytical models for amorphous-silicon and polysilicon thin-film transistors for high-definition-display technology’, J. Soc. Inf. Disp., 1995, 3, p. 223.
    20. 20)
      • 20. Fayez, M., Morsi, K.M., Sabry, M.N.: ‘Simulation of organic thin film transistor at both device and circuit levels’. 16th Int. Conf. on Aerospace Sciences & Aviation Technology, 2015, pp. 16.
    21. 21)
      • 21. Horowitz, G.: ‘Organic field-effect transistors’, Adv. Mater., 1998, 10, (5), pp. 365377.
    22. 22)
      • 22. Castro-Carranza, A., Estrada, M., Nolasco, J.C., et al: ‘Organic thin-film transistor bias-dependent capacitance compact model in accumulation regime’, IET Circuits Devices Syst., 2012, 6, (2), p. 130.
    23. 23)
      • 23. Stadlober, B.: ‘Organic electronics: material aspects, devices and microelectronic applications’. Conf. Proc. – Ninth Conf. on Ph.D. Research in Microelectronics and Electronics, PRIME 2013, 2013, pp. 1318.
    24. 24)
      • 24. Yaghmazadeh, O., Bonnassieux, Y., Saboundji, A., et al: ‘Organic thin-film transistors modeling; simulation and design of a fully organic AMOLED pixel circuit’. Int. Conf. on Simulation of Semiconductor Processes and Devices, SISPAD, 2008, pp. 189192.
    25. 25)
      • 25. Zaki, T., Scheinert, S., Hörselmann, R., et al: ‘Accurate capacitance modeling and characterization of organic thin-film transistors’, IEEE Trans. Electron Devices, 2014, 61, (1), pp. 98104.
    26. 26)
      • 26. Oberhoff, D., Pernstich, K.P., Gundlach, D.J., et al: ‘Modeling and parameter extraction on pentacene TFTs’, Proc. SPIE, Int. Soc. Opt. Eng., 2004, 5522, pp. 6980.
    27. 27)
      • 27. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part I – compact DC modeling’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
    28. 28)
      • 28. Marinov, O., Deen, M.J., Iniguez, B.: ‘Charge transport in organic and polymer thin-film transistors: recent issues’, IEE Proc., Circuits Devices Syst., 2005, 152, (3), pp. 189209.
    29. 29)
      • 29. Marinov, O., Deen, M.J., Datars, R.: ‘Compact modeling of charge carrier mobility in organic thin-film transistors’, J. Appl. Phys., 2009, 106, (6), pp. 64501-164501-13.
    30. 30)
      • 30. Deen, M.J., Marinov, O., Zschieschang, U., et al: ‘Organic thin-film transistors: part II – parameter extraction’, IEEE Trans. Electron Devices, 2009, 56, (12), pp. 29622968.
    31. 31)
      • 31. Marinov, O., Jamal Deen, M.: ‘Quasistatic compact modelling of organic thin-film transistors’, Org. Electron. Phys. Mater. Appl., 2013, 14, (1), pp. 295311.
    32. 32)
      • 32. Shur, M., Hack, M.: ‘Physics of amorphous silicon based alloy field-effect transistors’, J. Appl. Phys., 1984, 55, (10), pp. 38313842.
    33. 33)
      • 33. Vissenberg, M.C.J.M., Matters, M.: ‘Theory of the field-effect mobility in amorphous organic transistors’, Phys. Rev. B, 1998, 57, (20), pp. 964967.
    34. 34)
      • 34. Hwang, J., Wan, A., Kahn, A.: ‘Energetics of metal-organic interfaces: new experiments and assessment of the field’, Mater. Sci. Eng. R Rep., 2009, 64, (1–2), pp. 131.
    35. 35)
      • 35. Kim, C.H., Castro-Carranza, A., Estrada, M., et al: ‘A compact model for organic field-effect transistors with improved output asymptotic behaviors’, IEEE Trans. Electron Devices, 2013, 60, (3), pp. 11361141.
    36. 36)
      • 36. Castro-Carranza, A., Cheralathan, M., Iniguez, B., et al: ‘OTFT modeling: development and implementation in EDA tools’. Proc. of the 2013 Spanish Conf. on Electron Devices, CDE 2013, 2013, vol. 247745, pp. 4950.
    37. 37)
      • 37. Estrada, M., Cerdeira, A., Puigdollers, J., et al: ‘Accurate modeling and parameter extraction method for organic TFTs’, Solid-State Electron., 2005, 49, (6), pp. 10091016.
    38. 38)
      • 38. Estrada, M., Cerdeira, A., Mejia, I., et al: ‘Modeling the behavior of charge carrier mobility with temperature in thin-film polymeric transistors’, Microelectron. Eng., 2010, 87, (12), pp. 25652570.
    39. 39)
      • 39. Picos, R., Calvo, O., Iniguez, B., et al: ‘Optimized parameter extraction using fuzzy logic’, Solid-State Electron., 2007, 51, (5), pp. 683690.
    40. 40)
      • 40. Roca, M., Camps, O., Isern, E., et al: ‘Analytical appraisal of importance of different fitting parameters in device compact models’, Inst. Eng. Technol., 2014, 50, (11), pp. 832833.
    41. 41)
      • 41. Li, L., Academy, C., Debucquoy, M., et al: ‘A compact model for polycrystalline pentacene thin-film transistor’, J. Appl. Phys., 2010, 107, pp. 14.
    42. 42)
      • 42. Wang, L., Ji, Z., Lu, C., et al: ‘Combining bottom-up and top-down segmentation: a way to realize high-performance organic circuit’, IEEE Electron Device Lett., 2015, 36, (7), pp. 684686.
    43. 43)
      • 43. Kim, C.H., Bonnassieux, Y., Horowitz, G.: ‘Compact DC modeling of organic field-effect transistors: review and perspectives’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 278287.
    44. 44)
      • 44. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘Organic thin-film transistor compact model with accurate charge carrier mobility’. 2014 Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), 2014, pp. 133136.
    45. 45)
      • 45. Maiti, T.K., Hayashi, T., Mori, H., et al: ‘Benchmarking of a surface potential based organic thin-film transistor model against C 10 -DNTT high performance test devices’. 2013 IEEE Int. Conf. Microelectronic Test Structures, 2013, pp. 157161.
    46. 46)
      • 46. Maiti, T.K., Hayashi, T., Chen, L., et al: ‘A surface potential based organic thin-film transistor model for circuit simulation verified with DNTT high performance test devices’, IEEE Trans. Semicond. Manuf., 2014, 27, (2), pp. 159168.
    47. 47)
      • 47. Silvaco: ‘SmartSpice user's manual’, 2015.
    48. 48)
      • 48. Yaglioglu, B., Agostinelli, T., Cain, P., et al: ‘Parameter extraction and evaluation of UOTFT model for organic thin-film transistor circuit design’, J. Disp. Technol., 2013, 9, (11), pp. 890894.
    49. 49)
      • 49. Mijalković, S., Green, D., Nejim, A., et al: ‘Modelling of organic field-effect transistors for technology and circuit design’. 26th Int. Conf. on Microelectronics, Proc., MIEL 2008, 2008, pp. 469476.
    50. 50)
      • 50. Tejada, J.A.J., Awawdeh, K.M., Villanueva, J.A.L., et al: ‘Contact effects in compact models of organic thin film transistors: application to zinc phthalocyanine-based transistors’, Org. Electron., 2011, 12, (5), pp. 832842.
    51. 51)
      • 51. Tejada, J.A.J., Villanueva, J.A.L., Varo, P.L., et al: ‘Compact modeling and contact effects in thin film transistors’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 266277.
    52. 52)
      • 52. Bao, Z., Lovinger, A.J., Dodabalapur, A.: ‘Organic field-effect transistors with high mobility based on copper phthalocyanine’, Appl. Phys. Lett., 1996, 69, (20), pp. 30663068.
    53. 53)
      • 53. Karl, N.: ‘Charge carrier transport in organic semiconductors’, Synth. Met., 2003, 133–134, pp. 649657.
    54. 54)
      • 54. Hill, R.M.: ‘Variable-range hopping’, Phys. Status Solidi, 1976, 34, (2), pp. 601613.
    55. 55)
      • 55. Paasch, G., Lindner, T., Scheinert, S.: ‘Variable range hopping as possible origin of a universal relation between conductivity and mobility in disordered organic semiconductors’, Synth. Met., 2002, 132, (1), pp. 97104.
    56. 56)
      • 56. Li, L., Van Winckel, S., Genoe, J., et al: ‘Electric field-dependent charge transport in organic semiconductors’, Appl. Phys. Lett., 2009, 95, (15), pp. 36.
    57. 57)
      • 57. Li, L., Lu, N., Liu, M., et al: ‘General Einstein relation model in disordered organic semiconductors under quasiequilibrium’, Phys. Rev. B, Condens. Matter Mater. Phys., 2014, 90, (21), pp. 16.
    58. 58)
      • 58. Horowitz, G., Fichou, D., Peng, X., et al: ‘A field-effect transistor based on conjugated apha-sexithinyl’, Solid State Commun.., 1989, 72, (4), pp. 381384.
    59. 59)
      • 59. Horowitz, G., Peng, X., Fichou, D., et al: ‘The oligothiophene-based field-effect transistor: how it works and how to improve it’, J. Appl. Phys., 1990, 67, (1), pp. 528532.
    60. 60)
      • 60. Horowitz, G., Delannoy, P.: ‘An analytical model for organic-based thin-film transistors’, J. Appl. Phys., 1991, 70, (1), pp. 469475.
    61. 61)
      • 61. Yamashita, J., Kurosawa, T.: ‘On electronic current in NiO’, J. Phys. Chem. Solids, 1958, 5, pp. 3443.
    62. 62)
      • 62. Holstein, T.: ‘Studies of polaron motion’, Ann. Phys. (N. Y), 1959, 8, (3), pp. 325342.
    63. 63)
      • 63. Fesser, K., Bishop, A.R., Campbell, D.K.: ‘Optical absorption from polarons in a model of polyacetylene’, Phys. Rev. B, 1983, 27, (8), pp. 48044825.
    64. 64)
      • 64. Zhu, X.-Y., Yang, Q., Muntwiler, M.: ‘Charge-transfer excitons at organic semiconductor surfaces and interfaces’, Acc. Chem. Res., 2009, 42, (11), pp. 17791787.
    65. 65)
      • 65. Xie, Z., Abdou, M.S.A., Lu, X., et al: ‘Electrical characteristics of poly(3-hexylthiophene) thin film MISFETs’, Can. J. Phys., 1992, 70, (1), pp. 11711777.
    66. 66)
      • 66. Fadlallah, M., Billiot, G., Eccleston, W., et al: ‘DC/AC unified OTFT compact modeling and circuit design for RFID applications’, Solid-State Electron., 2007, 51, (7), pp. 10471051.
    67. 67)
      • 67. Estrada, M., Mejía, I., Cerdeira, A., et al: ‘Mobility model for compact device modeling of OTFTs made with different materials’, Solid-State Electron., 2008, 52, (5), pp. 787794.
    68. 68)
      • 68. Picos, R., Garcia-Moreno, E., Roca, M., et al: ‘Optimised design of an organic thin-film transistor amplifier using the gm/ID methodology’, IET Circuits Devices Syst., 2012, 6, (2), pp. 136140.
    69. 69)
      • 69. Miyano, S., Shimizu, Y., Murakami, T., et al: ‘A surface potential based poly-Si TFT model for circuit simulation’. 2008 Int. Conf. on Simulation of Semiconductor Processes and Devices, 2008, pp. 1013.
    70. 70)
      • 70. Sankhare, M.A., Guerin, M., Bergeret, E., et al: ‘Full-printed OTFT modeling: impacts of process variation’. 2014 12th IEEE Int. Conf. on Solid-State and Integrated Circuit Technology (ICSICT), 2014, p. 3.
    71. 71)
      • 71. Yip, G., Sugimoto, S., Hattori, R.: ‘OTFT device modeling with verilog – a language including non-linear effects of source/drain contact resistance’, J. Korean Phys. Soc., 2006, 48, (January), pp. 610.
    72. 72)
      • 72. Braga, D., Horowitz, G.: ‘Subthreshold regime in rubrene single-crystal organic transistors’, Appl. Phys. A, Mater. Sci. Process., 2009, 95, (1), pp. 193201.
    73. 73)
      • 73. Simonetti, O., Giraudet, L.: ‘Sub-threshold current in organic thin film transistors: influence of the transistor layout’, Org. Electron. Phys. Mater. Appl., 2013, 14, (3), pp. 909914.
    74. 74)
      • 74. Bürgi, L., Richards, T.J., Friend, R.H., et al: ‘Close look at charge carrier injection in polymer field-effect transistors’, J. Appl. Phys., 2003, 94, (9), pp. 61296137.
    75. 75)
      • 75. Wang, H., Li, L., Ji, Z., et al: ‘Contact-length-dependent contact resistance of top-gate staggered organic thin-film transistors’, IEEE Electron Device Lett., 2013, 34, (1), pp. 6971.
    76. 76)
      • 76. Wang, W., Li, L., Ji, Z., et al: ‘Modified transmission line model for bottom-contact organic transistors’, IEEE Electron Device Lett., 2013, 34, (10), pp. 13011303.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0439
Loading

Related content

content/journals/10.1049/iet-cds.2016.0439
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address