access icon free Real-time unified architecture for forward/inverse discrete cosine transform in high efficiency video coding

In High Efficiency Video Coding (HEVC) standard, higher video resolutions employ larger integer Discrete Cosine Transform (DCT)/inverse DCT (IDCT) block sizes. In this study, the authors propose two high-throughput unified DCT/IDCT architectures. The proposed architectures can process variable DCT/IDCT block sizes according to the HEVC standard. The proposed architectures were prototyped on TSMC 65 nm CMOS technology. The prototyping results show that the two unified architectures have throughput of 15.24 and 16.03 Gsps, respectively, and they can encode video sequences with resolutions up to 8 K at 120 fps and decode the same resolution at 240 fps using only one circuit for both DCT and IDCT.

Inspec keywords: discrete cosine transforms; codecs; CMOS integrated circuits; video coding; inverse transforms

Other keywords: size 65 nm; CMOS; high efficiency video coding encoder; HEVC; inverse discrete cosine transform; real-time processing; DCT; video sequences

Subjects: Codecs, coders and decoders; Integral transforms; CMOS integrated circuits; Video signal processing; Image and video coding; Integral transforms

References

    1. 1)
      • 2. Ohm, J., Sullivan, G.J., Schwarz, H., et al: ‘Comparison of the coding efficiency of video coding standards – including high efficiency video coding (HEVC)’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 115.
    2. 2)
      • 25. Ahmed, N., Natarajan, T., Rao, K.R.: ‘Discrete cosine transform’, IEEE Trans. Comput., 1974, C-23, pp. 9093.
    3. 3)
      • 1. Sullivan, G.J., Ohm, J.-R., Han, W.-J., et al: ‘Overview of the high efficiency video coding (HEVC) standard’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16491668.
    4. 4)
      • 9. Meher, P.K., Park, S.Y., Mohanty, B.K., et al: ‘Efficient integer DCT architectures for HEVC’, IEEE Trans. Circuits Syst. Video Technol., 2014, 24, (1), pp. 168178.
    5. 5)
      • 31. Hu, C.C.: ‘Modern semiconductor devices for integrated circuits’ (Prentice-Hall, 2010).
    6. 6)
      • 7. Park, S.Y., Meher, P.K.: ‘Flexible integer DCT architectures for HEVC’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2013, pp. 13761379.
    7. 7)
      • 27. Dempster, A.G., Macleod, M.D.: ‘Use of minimum-adder multiplier blocks in FIR digital filters’, "IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process.", 1995, 42, (9), pp. 569577.
    8. 8)
      • 5. Wiegand, T., Sullivan, G.J., Bjontegaard, G., et al: ‘Overview of the H.264/AVC video coding standard’, IEEE Trans. Circuits Syst. Video Technol., 2003, 13, (7), pp. 560576.
    9. 9)
      • 23. Chen, W.H., Smith, C.H., Fralick, S.C.: ‘A fast computational algorithm for the discrete cosine transform’, IEEE Trans. Commun., 1977, COM-25, (9), pp. 10041009.
    10. 10)
      • 13. Abdelrasoul, M., Sayed, M.S., Goulart, V.: ‘Scalable integer DCT architecture for HEVC encoder’. IEEE Computer Society Annual Symp. on VLSI (ISVLSI), Pittsburgh, PA, 2016, pp. 314318.
    11. 11)
      • 16. Shen, S., Shen, W., Fan, Y., et al: ‘A unified 4/8/16/32-point integer IDCT architecture for multiple video coding standards’. Proc. IEEE Int. Conf. Multimedia Expo, 2012, pp. 788793.
    12. 12)
      • 15. Sun, H., Zhou, D., Zhu, J., et al: ‘An area-efficient 4/8/16/32-point inverse DCT architecture for UHDTV HEVC decoder’, Visual Communications and Image Processing Conference 2014,, 2014, pp. 197200.
    13. 13)
      • 29. Voronenko, Y., Püschel, M.: ‘Multiplierless multiple constant multiplication’, ACM Trans. Algorithms (TALG), 2007, 3, (2), pp. 139.
    14. 14)
      • 4. Schwarz, H., Marpe, D., Wiegand, T.: ‘Overview of the scalable video coding extension of the H.264/AVC standard’, IEEE Trans. Circuits Syst. Video Technol., 2007, 17, (9), pp. 11031120.
    15. 15)
      • 14. Kalali, E., Hamzaoglu, I.: ‘FPGA implementations of HEVC inverse DCT using high-level synthesis’. Conf. on Design and Architectures for Signal and Image Processing (DASIP), 2015, pp. 16.
    16. 16)
      • 12. Pastuszak, G.: ‘Hardware architectures for the H.265/HEVC discrete cosine transform’, IET Image Process., 2015, 9, (6), pp. 468477.
    17. 17)
      • 3. Vanne, J., Viitanen, M., Koivula, A., et al: ‘Comparative study of 8 and 10-bit HEVC encoders’. Visual Communications and Image Processing Conf., 2014, Valletta, 2014, pp. 542545.
    18. 18)
      • 24. Jridi, M., Meher, P.: ‘A scalable approximate DCT architectures for efficient HEVC compliant video coding’, IEEE Trans. Circuits Syst. Video Technol., 2016, PP, (99), pp. 110.
    19. 19)
      • 19. Budagavi, M., Sze, V.: ‘Unified forward + inverse architecture for HEVC’. Proc. IEEE Int. Conf. Image Processing, September 2012, pp. 209212.
    20. 20)
      • 30. Goulart, V.M., Murakami, K.: ‘Dynamic effective precision matching computation’. Proc. of 11th Workshop on Synthesis and System Integration of Mixed Information Technologies SASIMI, Hiroshima, 2003, pp. 230237.
    21. 21)
      • 10. Bolaños-Jojoa, J.D., Velasco-Medina, J.: ‘Efficient hardware design of N-point 1D-DCT for HEVC’. 20th Symp. on Signal Processing, Images and Computer Vision (STSIVA), 2015, pp. 16.
    22. 22)
      • 22. Zhu, J., Liu, Z., Wang, D.: ‘Fully pipelined DCT/IDCT/Hadamard unified transform architecture for HEVC codec’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2013, pp. 677680.
    23. 23)
      • 18. Kilany, A., Abdelrasoul, M., Shalaby, A., et al: ‘A reconfigurable 2-D IDCT architecture for HEVC encoder/decoder’. 27th Int. Conf. on Microelectronics (ICM), Casablanca, 2015, pp. 242245.
    24. 24)
      • 21. Shen, S., Shen, W., Fan, Y., et al: ‘A unified forward/inverse transform architecture for multi-standard video codec design’, IEICE Trans. Fundam., 2013, E96-A, (7), pp. 15341542.
    25. 25)
      • 28. Dempster, A.G., Macleod, M.D.: ‘Constant integer multiplication using minimum adders’, IEEE Proc. Circuits, Devices Syst., 1994, 141, (5), pp. 407413.
    26. 26)
      • 20. Budagavi, M., Fuldseth, A., Bjøntegaard, G., et al: ‘Core transform design in the high efficiency video coding (HEVC) standard’, IEEE J. Sel. Top. Signal Process., 2013, 7, (6), pp. 10291041.
    27. 27)
      • 11. Darji, A.D., Makwana, R.P.: ‘High-performance multiplierless DCT architecture for HEVC’. 19th Int. Symp. on VLSI Design and Test (VDAT), 2015, pp. 15.
    28. 28)
      • 6. Bossen, F., Bross, B., Suhring, K., et al: ‘HEVC complexity and implementation analysis’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (12), pp. 16851696.
    29. 29)
      • 8. Zhao, W., Onoye, T., Song, T.: ‘High-performance multiplierless transform architecture for HEVC’. IEEE Int. Symp. on Circuits and Systems (ISCAS), 2013, pp. 16681671.
    30. 30)
      • 17. Pastuszak, G.: ‘Flexible architecture design for H.265/HEVC inverse transform’, Circuits Syst. Signal Process., 2015, 34, (6), pp. 19311945.
    31. 31)
      • 26. Potkonjak, M., Srivastava, M.B., Chandrakasan, A.: ‘Efficient substitution of multiple constant multiplications by shifts and additions using iterative pairwise matching’. 31st Conf. on Design Automation, 1994, pp. 189194.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0423
Loading

Related content

content/journals/10.1049/iet-cds.2016.0423
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading