access icon free Sensitivity of effective relative permeability for gapped magnetic cores with fringing effect

Magnetic component tolerances are caused by variations in air-gap and core relative permeability. This study presents the derivation for sensitivity of effective relative permeability to variations in the relative core permeability and relative gap length for magnetic cores with and without fringing effect. The expressions for the fringing factor and effective relative permeability for the magnetic cores have been derived. The effect of air-gap on the core properties, which includes core power loss density, magnetic flux density, and magnetic field intensity is addressed for cores used in low-frequency and high-frequency applications. An example core is selected to support the theoretical predictions. The expressions to determine the inductor tolerances are presented.

Inspec keywords: sensitivity; magnetic flux; permeability; magnetic fields; magnetic cores; air gaps

Other keywords: sensitivity; magnetic flux density; low-frequency applications; inductor tolerances; magnetic component tolerances; fringing effect; high-frequency applications; magnetic field intensity; air-gap; core power loss density; relative core permeability; relative gap length; gapped magnetic cores

Subjects: Magnetic cores; Magnetostatics

References

    1. 1)
      • 5. Fukunaga, H., Eguchi, T., Ohta, Y., et al: ‘Core loss in amorphous cut cores with air gaps’, IEEE Trans. Magn., 1989, 25, (3), pp. 26942698.
    2. 2)
      • 26. Murthy-Bellur, D., Kondrath, N., Kazimierczuk, M. K.: ‘Transformer winding loss caused by skin and proximity effects including harmonics in PWM DC–DC flyback converter for continuous conduction mode’, IET Power Electron., 2011, 4, (4), pp. 363373.
    3. 3)
      • 4. Zurek, S.: ‘FEM simulation of effect of non-uniform air gap on apparent permeability of cut cores’, IEEE Trans. Magn., 2012, 48, (4), pp. 15201523.
    4. 4)
      • 10. Chen, W., He, J., Luo, H., et al: ‘Winding loss analysis and new air-gap arrangement for high-frequency inductors’. IEEE Power Electronics Specialists Conf., Vancouver, BC, 2001, vol. 4, pp. 20842089.
    5. 5)
      • 24. Ayachit, A., Reatti, A., Kazimierczuk, M.K.: ‘Magnetising inductance of multiple-output flyback DC–DC converter for discontinuous-conduction mode’, IET Power Electron., 2016, doi: 10.1049/iet-pel.2016.0390.
    6. 6)
      • 19. Zhang, J., Hurley, W.G., Wolfle, W.H.: ‘Gapped transformer design methodology and implementation for LLC resonant converters’, IEEE Trans. Ind. Appl., 2016, 52, (1), pp. 342350.
    7. 7)
      • 28. Dalessandro, L., Odendaal, W.G., Kolar, J.W.: ‘HF characterization and non-linear modeling of a gapped toroidal magnetic structure’, IEEE Trans. Power Electron., 2006, 21, (5), pp. 11671175.
    8. 8)
      • 6. Bartolli, M., Reatti, A., Kazimierczuk, M.K.: ‘High-frequency models of ferrite inductors’. IEEE Int. Conf. Industrial Electronics Control and Instrumentation Conf., Bologna, Italy, September 1994, pp. 16701675.
    9. 9)
      • 2. Patridge, G.F.: ‘Philosophical magazine’, 7th series (Wiley, 1936), vol. 22, pp. 664678.
    10. 10)
      • 30. Howard, T.O., Carpenter, K.H.: ‘A numerical study of the coupling coefficients for pot core transformers’, IEEE Trans. Magn., 1995, 31, (3), pp. 22492253.
    11. 11)
      • 31. Shenhui, J., Quanxing, J.: ‘An alternative method to determine the initial permeability of ferrite core using network analyzer’, IEEE Trans. Electromagn. Compat., 2005, 47, (3), pp. 651657.
    12. 12)
      • 17. Sekiya, H., Kazimierczuk, M.K.: ‘Design of AC resonant inductors using area product method’. IEEE Energy Conversion Congress and Exposition, San Jose, CA, September 2009, pp. 9941001.
    13. 13)
      • 15. Ayachit, A., Kazimierczuk, M.K.: ‘Effect of air gap on core power loss in low and high permeability magnetic cores’. Electrical Machine and Coil Winding Exposition, Milwaukee, USA, May 2016.
    14. 14)
      • 11. Grandi, G., Kazimierczuk, M.K., Massarini, A., et al: ‘Model of laminated iron-core inductors for high frequencies’, IEEE Trans. Magn., 2004, 40, (4), pp. 18391845.
    15. 15)
      • 25. Murthy-Bellur, D., Kazimierczuk, M.K.: ‘Harmonic winding loss in buck DC–DC converter in discontinuous conduction mode’, IET Power Electron., 2010, 3, (5), pp. 740754.
    16. 16)
      • 22. Rahim, N.A., Omar, A.M.: ‘Ferrite core analysis for DC–DC flyback converter’. IEEE TENCON, Kuala Lumpur, September 2000, vol. 3, pp. 290294.
    17. 17)
      • 18. Deng, Q., Liu, J., Czarkowski, D., et al: ‘Frequency-dependent resistance of litz-wire square solenoid coils and quality factor optimization for wireless power transfer’, IEEE Trans. Ind. Electron., 2016, 63, (5), pp. 28252837.
    18. 18)
      • 3. Kazimierczuk, M.K.: ‘High-frequency magnetic components’ (Wiley, Chichester, UK, 2014, 2nd edn.).
    19. 19)
      • 12. Roshen, W.A.: ‘Fringing field formulas and winding loss due to an air gap’, IEEE Trans. Magn., 2007, 43, (8), pp. 33873394.
    20. 20)
      • 23. Lyons, B.J., Hayes, J.G., Egan, M.G.: ‘Magnetic material comparisons for high-current inductors in low–medium frequency DC–DC converters’. IEEE Applied Power Electronics Conf. and Exposition, Anaheim, CA, USA, 2007, pp. 7177.
    21. 21)
      • 35. O41810 Ferrite Core Datasheet. Available at https://www.mag-inc.com/products/ferrite-cores.
    22. 22)
      • 27. Leary, A.M., Ohodnicki, P.R., McHenry, M.E.: ‘Soft magnetic materials in high-frequency, high-power conversion applications’, J. Miner. Metals Mater. Soc., 2012, 64, (7), pp. 772781.
    23. 23)
      • 21. Lee, S.H., Lorenz, R.D.: ‘Development and validation of model for 95%-efficiency 220 W wireless power transfer over a 30 cm air gap’, IEEE Trans. Ind. Appl., 2011, 47, (6), pp. 24952504.
    24. 24)
      • 16. Witulski, A.F.: ‘Introduction to modeling of transformers and coupled inductors’, IEEE Trans. Power Electron., 1995, 10, (3), pp. 349357.
    25. 25)
      • 9. Simpson, N., Wrobel, R., Mellor, P.H.: ‘Multi-physics design of high-energy density wound components’. IEEE Energy Conversion Congress and Exposition, Montreal, QC, September 2015, pp. 38573864.
    26. 26)
      • 13. Steinmetz, C.P.: ‘On the law of hysteresis’, Proc. IEEE, 1984, 72, pp. 197221.
    27. 27)
      • 14. Ayachit, A., Kazimierczuk, M.K.: ‘Steinmetz equation for gapped magnetic cores’, IEEE Magn. Lett., 2016, 7.
    28. 28)
      • 7. Bartolli, M., Noferi, N., Reatti, A., et al: ‘Modeling winding losses in high-frequency power inductors’, J. Circuits Syst. Comput., 1995, 5, (4), pp. 607626.
    29. 29)
      • 1. McLyman, W.T.: ‘Transformer and inductor design handbook’ (Marcel Dekker, New York, USA, 2004, 3rd edn.).
    30. 30)
      • 29. Lavers, J.D., Bolborici, V.: ‘Loss comparison in the design of high frequency inductors and transformers’, IEEE Trans. Magn., 1999, 35, (5), pp. 35413543.
    31. 31)
      • 8. Roshen, W.A.: ‘Winding loss from an air-gap’. IEEE Power Electronics Specialists Conf., Aachen, Germany, June 2004, vol. 3, pp. 17241730.
    32. 32)
      • 33. Wojda, R.P., Kazimierczuk, M.K.: ‘Analytical optimisation of solid-round-wire windings conducting dc and ac non-sinusoidal periodic currents’, IET Power Electron., 2013, 6, (7), pp. 14621474.
    33. 33)
      • 34. Wojda, R.P., Kazimierczuk, M.K.: ‘Winding resistance of litz-wire and multi-strand inductors’, IET Power Electron., 2012, 5, (2), pp. 257268.
    34. 34)
      • 20. Tytko, G., Dziczkowski, L.: ‘E-cored coil with a circular air gap inside the core column used in eddy current testing’, IEEE Trans. Magn., 2015, 51, (9), pp. 14.
    35. 35)
      • 32. Wojda, R.P., Kazimierczuk, M.K.: ‘Analytical winding size optimization of solid-round-wire windings’, IEEE Trans. Ind. Electron., 2013, 60, (3), pp. 10331041.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0410
Loading

Related content

content/journals/10.1049/iet-cds.2016.0410
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading