Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess 15-year educational experience on autonomous electronic information devices by flipped classroom and try-by-yourself methods

Since 2001, the departments of Electrical and Electronics and Information and Communication Electronics Engineering of Faculty of Engineering, the University of Tokyo (UTokyo) have jointly given a lecture on autonomous electronic information devices for undergraduate students. According to the on-line questionnaire, 80% of students in 2010–2012 replied that the lecture was useful for their future career. The task given to students was to design and realise an autonomous electronic information devices (so-called ‘the IoT-gadgets’) by themselves, and conduct a live demonstration in front of their colleagues. The device must have an ‘input’, ‘output’, and some ‘information processing’. Being aware of the speed of technology evolution as well as the short hours of the lecture, the professor tried not to give direct answers to students’ questions on how-to instantly build and program an information device. Instead, the students were told to beware of their ‘methods’. This refers to the deductive thinking introduced by René Descartes, and in the lecture's context how students should behave in order to realise the device. In this study, the backgrounds of various associated topics are discussed, such as the UTokyo's educational system, the world's rapid prototyping movement, open hardware, course design, students’ reactions, and future directions.

References

    1. 1)
      • 43. Ta, T.D., Fukumoto, M., Narumi, K., et al: ‘Interconnection and double layer for flexible electronic circuit with instant inkjet circuits’. Proc. of the 2015 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing (UbiComp ‘15), New York, NY, USA, pp. 181190.
    2. 2)
      • 49. Islamgozhayev, T.U., Zholmyrzayev, A.K., Mazhitov, Sh.S., et al: ‘IICT-bot: educational robotic platform using omni-directional wheels with open source code and architecture’. 2015 Int. Siberian Conf. on Control and Communications (SIBCON), Omsk, Russia, 21–23 May 2015, pp. 13.
    3. 3)
      • 24. Fox, S.: ‘Third wave do-it-yourself (DIY): potential for prosumption, innovation, and entrepreneurship by local populations in regions without industrial manufacturing infrastructure’, Technol. Soc., 2014, 39, pp. 1830.
    4. 4)
      • 51. Asato, K., Asato, K., Nagado, T., et al: ‘Development of low cost educational material for learning fundamentals of mechatronics’. ICIIBMS 2015, Track 2: Artificial Intelligence, Robotics and Human-Computer Interaction, Okinawa, Japan, Okinawa, Japan, 28–30 November 2015, pp. 454456.
    5. 5)
      • 40. Umapathi, U., Chen, H.T., Mueller, S., et al: ‘LaserStacker: fabricating 3D objects by laser cutting and welding’. Proc. of the 28th Annual ACM Symp. on User Interface Software and Technology (UIST ‘15), pp. 575582.
    6. 6)
      • 28. Richardson, L.: ‘Performing the sharing economy’, Geoforum, 2015, 67, pp. 121129.
    7. 7)
      • 55. Hoyo, A., Guzmán, J.L., Moreno, J.C., et al: ‘Teaching control engineering concepts using open source tools on a raspberry Pi board’. IFAC Workshop on Internet Based Control Education IBCE15, Brescia, Italy, 4–6 November 2015, vol. 48-29, pp. 99104.
    8. 8)
      • 25. Papavlasopoulou, S., Giannakos, M.N., Jaccheri, L.: ‘Empirical studies on the maker movement, a promising approach to learning: a literature review’, Entertainment Comput., 2017, 18, pp. 5778.
    9. 9)
      • 30. URL: https://beagleboard.org/black.
    10. 10)
      • 8. Mita, Y., Kawahara, Y.: ‘Introduction to electronic information devices – try-by-yourself-style lecture on autonomous electronic devices’. Proc. 11th European Workshop on Microelectronics Education (EWME), Southhampton, UK, 11–13 May 2016.
    11. 11)
      • 4. Deckard, C., Beaman, J., Darrah, J.: ‘Method for selective LASER sintering with layerwise cross-scanning’. US Patent, 5,155,324, 13 October 1992.
    12. 12)
      • 42. Kawahara, Y., Hodges, S., Cook, B.S., et al: ‘Instant inkjet circuits: lab-based inkjet printing to support rapid prototyping of UbiComp devices’. Proc. of the 2013 ACM Int. Joint Conf. on Pervasive and Ubiquitous Computing (UbiComp ‘13), New York, NY, USA, pp. 363372.
    13. 13)
      • 33. Candelas, F.A., García, G.J., Puente, S., et al: ‘Experiences on using Arduino for laboratory experiments of automatic control and robotics’. IFAC Workshop on Internet Based Control Education IBCE15, Brescia, Italy, 4–6 November 2015, vol. 48, No. 29, pp. 105110.
    14. 14)
      • 12. Hernandez-Barrera, A.: ‘Teaching introduction to robotics: using a blend of problem- and project-based learning approaches’. IEEE Southeastcon 2014, Lexinton, KY, USA, 13–16 March 2014, pp. 15.
    15. 15)
      • 45. URL: https://www.todaitotexas.com/en/.
    16. 16)
      • 48. Galadima, A.A.: ‘Arduino as a learning tool’. 2014 11th Int. Conf. on Electronics, Computer and Computation (ICECCO), Abuja, Nigeria, 29 September–1 October 2014, pp. 14.
    17. 17)
      • 34. URL: https://www.usb.org/.
    18. 18)
      • 61. Castañeda, J.J., Ruiz-Olaya, A.F., Acuña, W., et al: ‘A low-cost matlab-based educational platform for teaching robotics’. 2016 IEEE Colombian Conf. on Robotics and Automation (CCRA), Bogotá, Columbia, 29–30 September 2016, pp. 16.
    19. 19)
      • 37. Standage, T.: ‘The victorian internet: the remarkable story of the telegraph and the nineteenth century's on-line pioneers’, 1998, ISBN0802713424.
    20. 20)
      • 67. URL: https://www.particle.io/prototype.
    21. 21)
      • 32. URL: https://www.x.org/.
    22. 22)
      • 18. Benington, H.D.: ‘Production of large computer programs’, IEEE Ann. Hist. Comput., 1983, 5, (4), pp. 350361.
    23. 23)
      • 22. Schneider, D.: ‘The innovators club’, IEEE Spectrum, 1 October 2008.
    24. 24)
      • 58. Raikar, M.M., Desai, P., Naragund, J.G.: ‘Active learning explored in open elective course: Internet of Things (IoT)’. 2016 IEEE 8th Int. Conf. on Technology for Education, Bombay, India, 2–4 December 2016, pp. 1518.
    25. 25)
      • 5. Almquist, T., Smalley, D.: ‘Thermal stereolithography’. US Patent, 5,569,349, 29 October 1996.
    26. 26)
      • 59. Kato, Y.: ‘Splish: a visual programming environment for arduino to accelerate physical computing experiences’. 2010 Eighth Int. Conf. on Creating, Connecting and Collaborating through Computing, San Diego, CA, USA, 25–27 January 2010, pp. 310.
    27. 27)
      • 62. URL: https://www.microchip.com/design-centers/microcontrollers.
    28. 28)
      • 15. Fu, J.: ‘Teaching method research based on Arduino platform’. 2015 Sixth Int. Conf. on Intelligent Systems Design and Engineering Applications, Guiyang, Guizhou, China, 18–19 August 2015, pp. 798801.
    29. 29)
      • 21. Mikhak, B., Lyon, C., Gorton, T., et al: ‘Fab lab: an alternate model of ICT for development’. development by design (dyd02), Bangalore, 2002.
    30. 30)
      • 57. He, N., Qian, Y., Huang, H.-W.: ‘Experience of teaching embedded systems design with BeagleBone black board’. 2016 IEEE Int. Conf. on Electro Information Technology (EIT), Grand Forks, ND, USA, 19–21 May 2016, pp. 02170220.
    31. 31)
      • 10. Edwards, C.: ‘ICT lessons get the raspberry’, Eng. Technol., 2012, 7, (4), pp. 7678.
    32. 32)
      • 56. Mischie, S.: ‘On teaching raspberry Pi for undergraduate university programmes’. 2016 12th IEEE Int. Symp. on Electronics and Telecommunications (ISETC), Romania, 27–28 October 2016, pp. 149153.
    33. 33)
      • 53. Plaza, P., Sancristobal, E., Fernandez, G., et al: ‘Collaborative robotic educational tool based on programmable logic and arduino’. 2016 Technologies Applied to Electronics Teaching (TAEE), Seville, Spain, 22–24 June 2016, pp. 18.
    34. 34)
      • 46. URL: https://www.kickstarter.com/projects/252587878/trickey-any-key-anywhere/widget/video.html.
    35. 35)
      • 9. Hennessy, J.L., Patterson, D.A.: ‘Computer architecture, fifth edition: a quantitative approach’ (Morgan Kaufmann, 2011), ISBN 978-0123838728.
    36. 36)
      • 36. URL: https://www.intra2net.com/en/developer/libftdi/.
    37. 37)
      • 11. Chuang, I., Gershenfeld, N.: ‘How to make (Almost) anything’. MIT Course Number MAS.863. Available at https://ocw.mit.edu/courses/media-arts-and-sciences/mas-863-how-to-make-almost-anything-fall-2002/index.htm.
    38. 38)
      • 23. Kathan, W., Matzler, K., Veider, V.: ‘The sharing economy: your business model's friend or foe?’, Bus. Horiz., 2016, 59, pp. 663672.
    39. 39)
      • 65. URL: https://akizukidenshi.com/.
    40. 40)
      • 38. NXP Semiconductor: ‘UM10204 I2C-bus specification and user manual’, URL: https://www.nxp.com/documents/user%20manual/UM10204.pdf.
    41. 41)
      • 31. URL: https://www.raspberrypi.org/.
    42. 42)
      • 7. Hamill, I.S.M., Kilbane, J.: ‘System for numerical control of a machine tool’. US Patent 3,878,983, 22 April 1975.
    43. 43)
      • 60. Rahul, R., Whitchurch, A., Rao, M.: ‘An open source graphical robot programming environment in introductory programming curriculum for undergraduates’. 2014 IEEE Int. Conf. on MOOC, Innovation and Technology in Education (MITE), India, 19–20 December 2014, pp. 96100.
    44. 44)
      • 1. Kim, Y., Sting, F., Loch, C.: ‘Top-down, bottom-up, or both?, toward an integrative perspective on operations strategy formation’, J. Oper. Manage., 2014, 32, (7–8), pp. 462474.
    45. 45)
      • 6. Wetzel, T.: ‘Laser cutting machine tool’. US Patent, 3,422,246, 14 January 1969.
    46. 46)
      • 63. URL: https://www.zilog.com/.
    47. 47)
      • 16. Radzi, N.A.M., Ismail, A., Karunanithi, S., et al: ‘Integrating programming with BeagleBone black for undergraduate's ‘Programming for Engineers’ syllabus’. 2016 IEEE 8th Int. Conf. on Engineering Education (ICEED), Kuala Lumpur, Malaysia, 7–8 December 2016, pp. 1215.
    48. 48)
      • 64. URL: https://akizukidenshi.com/catalog/g/gK-05019/.
    49. 49)
      • 66. URL: https://www.renesas.com/en-us/products/microcontrollers-microprocessors/h8.html.
    50. 50)
      • 26. https://www.arduino.org/.
    51. 51)
      • 17. Descartes, R.: ‘Discours de la Méthode (presented by Laurence Renault)’. GF Flammarion series #1091, 1637.
    52. 52)
      • 13. Grover, R., Krishnan, S., Shoup, T., et al: ‘A competition-based approach for undergraduate mechatronics education using the Arduino platform’. Fourth Interdisciplinary Engineering Design Education Conf., Santa Clara, CA, USA, 3 March 2014, pp. 7883.
    53. 53)
      • 14. Brox, P., Huertas-Sánchez, G., López-Angulo, A., et al: ‘Design of sensory systems using the platform Arduino by undergraduate physics students’. 2016 Technologies Applied to Electronics Teaching (TAEE), Seville, Spain, 22–24 June 2016, pp. 16.
    54. 54)
      • 39. Mueller, S., Baudisch, P.: ‘Laser cutters: a new class of 2D output devices’, ACM Int., 2015, 22, (5), pp. 7274.
    55. 55)
      • 3. Hull, C., Calif, A.: ‘Apparatus for production of three-dimensional objects by stereolithography’. US Patent, 4,575,330, 19 December 1989.
    56. 56)
      • 68. URL: https://sakuraboard.net/index_en.html.
    57. 57)
      • 54. Mujica, F.A., Esposito, W.J., Gonzalez, A., et al: ‘Teaching digital signal processing with stanford's LAB-in-a-box’. 2015 IEEE Signal Processing and Signal Processing Education Workshop (SP/SPE), Salt Lake City, Utah, USA, 9–12 August 2015, pp. 307312.
    58. 58)
      • 20. Sinek, S.: ‘Start with why: how great leaders inspire everyone to take action’, Portfolio; Reprint, 2011.
    59. 59)
      • 29. Redlich, T., Buxbaum-Conradi, S., Basmer-Birkenfeld, S.-V., et al: ‘OpenLabs – open source microfactories enhancing the FabLab Idea’. 2016 49th Hawaii Int. Conf. on System Sciences, Hawaii, USA, 6–8 January 2016, pp. 707715.
    60. 60)
      • 47. Sarik, J., Kymissis, I.: ‘Lab kits using the arduino prototyping platform’. 40th ASEE/IEEE Frontiers in Education Conf., Washington, DC, USA, 27–30 Oct 2010, p. T3C1-5.
    61. 61)
      • 41. Mueller, S., Kruck, B., Baudisch, P.: ‘Laser origami: laser-cutting 3D objects’, ACM Int., 2014, 21, (2), pp. 3641.
    62. 62)
      • 50. Malaoui, A.: ‘Low cost pedagogic device for practical works using embedded system’. 2015 IEEE/ACS 12th Int. Conf. of Computer Systems and Applications (AICCSA), Marrakech, Morocco, 17–20 November 2015, pp. 18.
    63. 63)
      • 35. URL: https://www.ftdichip.com/.
    64. 64)
      • 52. Philipp, F., Glesner, M.: ‘High-level abstraction for teaching smart systems design with modular hardware’. 10th European Workshop on Microelectronics Education (EWME), Tallinn, Estonia, 10–14 May 2014, pp. 146150.
    65. 65)
      • 2. Chandler, A.D., Hikino, T., Nordenflycht, A.V.: ‘Inventing the electronic century: the epic story of the consumer electronics and computer industries, with a new preface (Harvard studies in business history)’ (Harvard University Press, 2005), ISBN 978-0674018051.
    66. 66)
      • 19. du Gay, P.: ‘Doing cultural studies: the story of the Sony Walkman’ (SAGE Publications, 1997), ISBN978-0761954026.
    67. 67)
      • 44. URL: https://www.sxsw.com/.
    68. 68)
      • 27. Katz, M.L., Shapiro, C.: ‘Network externalities, competition, and compatibility’, Am. Econ. Rev., 1985, 75, (3), pp. 424440.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0406
Loading

Related content

content/journals/10.1049/iet-cds.2016.0406
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address