access icon free Low-jitter DLL applied for two-segment TDC

A low-jitter delay-locked loop (DLL) for high-resolution time-to-digital converter (TDC) is proposed in this study. The generated high accurate and low-jitter outputs with uniformly distributed multiphase clocks directly from the voltage-controlled delay line (VCDL) in DLL are applied to two-segment TDC. For reducing the static phase offset in locked state, the charge pump with interior feedback loop is used to achieve a better current matching between the charging and discharging currents. An improved phase detector as well as a differential VCDL excellent in linearity property and noise suppression is utilised for reducing the output clock jitter. Fabricated by TSMC 0.35 μm complementary metal–oxide–semiconductor process, the measurement results show that DLL's frequency locking range is 60–240 MHz, the output clock jitters at 125 MHz are 3.6 ps for root mean square and 35.07 ps for peak-to-peak. By clock period counting and eight-phase discrimination, the resolution of <1 ns and maximum range of around 1 μs as well as the differential non-linearity <0.68 LSB and the integration non-linearity within −0.97 to 1.24 LSB are obtained for two-segment TDC.

Inspec keywords: clocks; timing jitter; charge pump circuits; delay lines; time-digital conversion; mean square error methods; CMOS integrated circuits; delay lock loops

Other keywords: voltage-controlled delay line; low-jitter DLL; time 3.6 ps; interior feedback loop; clock jitter; high-resolution time-to-digital converter; delay-locked loop; TSMC complementary metal–oxide–semiconductor process; frequency 60 MHz to 240 MHz; VCDL; time 35.07 ps; clock period counting; locked state; noise suppression; size 0.35 mum; low-jitter outputs; uniformly distributed multiphase clocks; phase detector; eight-phase discrimination; current matching; static phase offset; linearity property; discharging currents; two-segment TDC; root mean square; charge pump

Subjects: Other digital circuits; Pulse circuits; Other analogue circuits; Interpolation and function approximation (numerical analysis); Interpolation and function approximation (numerical analysis); Power electronics, supply and supervisory circuits; A/D and D/A convertors; A/D and D/A convertors; CMOS integrated circuits

References

    1. 1)
      • 4. Lee, M., Abidi, A.A.: ‘A 9b, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue’, IEEE J. Solid-State Circuits, 2008, 43, (4), pp. 769777.
    2. 2)
      • 5. Jansson, J.P., Mantyniemi, A., Kostamovaara, J.: ‘Synchronization in a multilevel CMOS time-to-digital converter’, IEEE Trans. Circuits Syst. I, 2009, 56, (8), pp. 16221634.
    3. 3)
      • 1. Gao, W., Gao, D., Brasse, D., et al: ‘Precise multiphase clock generation using low-jitter delay-locked loop techniques for positron emission tomography imaging’, IEEE Trans. Nucl. Sci., 2010, 57, (3), pp. 10631070.
    4. 4)
      • 16. Park, Y.S., Lee, S.W., Kong, B.S., et al: ‘PVT-invariant single-to-differential data converter with minimum skew and duty-ratio distortion’. IEEE Int. Symp. on Circuits and Systems, 2008, pp. 19021905.
    5. 5)
      • 18. Tu, Y., Cheng, K., Wei, H., et al: ‘A low jitter delay-locked-loop applied for DDR4’. IEEE Int. Symp. on Design and Diagnostics of Electronic Circuits Systems, 2013, pp. 98101.
    6. 6)
      • 9. Yao, C., Hsia, W., Wen, Y.: ‘The soft-injection-locked ring oscillator and its application in a Vernier-based TDC’, IEEE Trans. Instrum. Meas., 2014, 63, (8), pp. 20642071.
    7. 7)
      • 19. Gholami, M.: ‘Total jitter of delay-locked loops due to four main jitter sources’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (6), pp. 20402049.
    8. 8)
      • 15. Gholami, M., Rahimpour, H., Ardeshir, G., et al: ‘Digital delay locked loop-based frequency synthesiser for digital video broadcasting-terrestrial receivers’, IET Circuits Devices Syst., 2014, 8, (1), pp. 3846.
    9. 9)
      • 12. Liao, F., Lu, S.: ‘A waveform-dependent phase-noise analysis for edge-combining DLL frequency multipliers’, IEEE Trans. Microw. Theory Tech., 2012, 60, (4), pp. 10861096.
    10. 10)
      • 11. Chang, H., Lin, J., Yang, C., et al: ‘A wide-range delay-locked loop with a fixed latency of one clock cycle’, IEEE J. Solid-State Circuits, 2002, 37, (8), pp. 10211027.
    11. 11)
      • 17. Hwang, S., Kim, K., Kim, J., et al: ‘A self-calibrated DLL-based clock generator for an energy-aware EISC processor’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (3), pp. 575579.
    12. 12)
      • 6. Xia, L., Chen, H., Huang, Y., et al: ‘100-phase, dual-loop delay-locked loop for impulse radio ultra-wideband coherent receiver synchronisation’, IET Circuits Devices Syst., 2011, 5, (6), pp. 484493.
    13. 13)
      • 13. Gholami, M., Ardeshir, G.: ‘Jitter of delay-locked loops due to PFD’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 22, (10), pp. 21762180.
    14. 14)
      • 7. Nebhen, J., Meillère, S., Masmoudi, M., et al: ‘Temperature compensated CMOS ring VCO for MEMS gas sensor’, Analog Integr. Circuits Signal Process., 2013, 76, (2), pp. 225232.
    15. 15)
      • 14. Gholami, M., Ardeshir, G.: ‘Analysis of DLL jitter due to voltage-controlled delay line’, Circuits Syst. Signal Process., 2013, 32, (5), pp. 117.
    16. 16)
      • 2. Marino, N., Baronti, F., Fanucci, L., et al: ‘A multichannel and compact time to digital converter for time of flight positron emission tomography’, IEEE Trans. Nucl. Sci., 2015, 62, (3), pp. 814823.
    17. 17)
      • 20. Rantala, A., Martins, D.G., Åberg, M.: ‘A DLL clock generator for a high speed A/D-converter with 1 ps jitter and skew calibrator with 1 ps precision in 0.35 μm CMOS’, Analog Integr. Circuits Signal Process., 2006, 50, (1), pp. 6979.
    18. 18)
      • 8. Moon, Y., Choi, J., Lee, K., et al: ‘An all-analog multiphase delay-locked loop using a replica delay line for wide-range operation and low-jitter performance’, IEEE J. Solid-State Circuits, 2000, 35, (3), pp. 377384.
    19. 19)
      • 21. Field, R.M., Realov, S., Shepard, K.L.: ‘A 100 fps, time-correlated single-photon-counting-based fluorescence-lifetime imager in 130 nm CMOS’, IEEE J. Solid-State Circuits, 2014, 49, (4), pp. 867880.
    20. 20)
      • 10. Zlatanski, M., Uhring, W., Normand, J., et al: ‘A new high-resolution time-to-digital converter concept based on a 128 stage 0.35 µm CMOS delay generator’, Intern. Combust. Engines, 2009, 105, (22), pp. 375384.
    21. 21)
      • 3. Markovic, B., Tisa, S., Villa, F.A., et al: ‘A high-linearity, 17 ps precision time-to-digital converter based on a single-stage Vernier delay loop fine interpolation’, IEEE Trans. Circuits Syst. I, 2013, 60, (3), pp. 557569.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2016.0342
Loading

Related content

content/journals/10.1049/iet-cds.2016.0342
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading