Heterogeneous energy-sparing reconfigurable logic: spin-based storage and CNFET-based multiplexing

Heterogeneous energy-sparing reconfigurable logic: spin-based storage and CNFET-based multiplexing

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Field programmable gate array (FPGA) attributes of logic configurability, bitstream storage, and dynamic signal routing can be realised by leveraging the complementary benefits of emerging devices with complementary metal oxide semiconductor (CMOS)-based devices. A novel carbon/magnet lookup table (CM-LUT) is developed and evaluated by trading off a range of mixed heterogeneous technologies to balance energy, delay, and reliability attributes. Herein, magnetic spintronic devices are employed in the configuration memory to contribute non-volatility and high scalability. Meanwhile, carbon nanotube field-effect transistors (CNFETs) provide desirable conductivity, low delay, and low power consumption. The proposed CM-LUT offers ultra-low power and high-speed operation while maintaining high endurance re-programmability with increased radiation-induced soft-error immunity. The proposed four-input one-output CM-LUT utilises 41 CNFETs and 20 magnetic tunnel junctions for read operations and 35 CNFET to perform write operations. Results indicate that CM-LUT achieves an average four-fold energy reduction, eight-fold faster circuit operation and 9.3% reconfiguration power delay product improvement in comparison with spin-based look-up tables. Finally, additional hybrid technology designs are considered to balance performance with the demands of energy consumption for near-threshold operation.


    1. 1)
      • 1. Zhou, Y., Thekkel, S., Bhunia, S.: ‘Low power FPGA design using hybrid CMOS-NEMS approach’. Proc. of the 2007 Int. Symp. on Low Power Electronics and Design, 2007, pp. 1419.
    2. 2)
      • 2. Zhao, W., Deng, E., Klein, J.-O., et al: ‘A radiation hardened hybrid spintronic/CMOS nonvolatile unit using magnetic tunnel junctions’, J. Phys. D Appl. Phys., 2014, 47, pp. 405003.
    3. 3)
      • 3. Deng, J., Wong, H.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application—Part I: Model of the intrinsic channel region’, IEEE Trans. Electron Dev.on, 2007, 54, pp. 31863194.
    4. 4)
      • 4. Kumar, T.N., Almurib, H.A., Lombardi, F.: ‘A novel design of a memristor-based look-up table (LUT) for FPGA’. 2014 IEEE Asia Pacific Conf. on Circuits and Systems (APCCAS), 2014, pp. 703706.
    5. 5)
      • 5. Wen, C.-Y., Li, J., Kim, S., et al: ‘A non-volatile look-up table design using PCM (phase-change memory) cells’. 2011 Symp. on VLSI Circuits (VLSIC), 2011, pp. 302303.
    6. 6)
      • 6. Han, K.-S., Jeon, D.-I., Chung, K.-S.: ‘Ultra low power and high speed FPGA design with CNFET’. 2012 Int. Symp. on Communications and Information Technologies (ISCIT), 2012, pp. 828833.
    7. 7)
      • 7. Zhao, W., Belhaire, E., Chappert, C., et al: ‘New non-volatile logic based on spin-MTJ’, Phys. Status Sol. (a), 2008, 205, pp. 13731377.
    8. 8)
      • 8. Zhao, W., Chappert, C., Javerliac, V., et al: ‘High speed, high stability and low power sensing amplifier for MTJ/CMOS hybrid logic circuits’, IEEE Trans. Magn., 2009, 45, pp. 37843787.
    9. 9)
      • 9. Zhao, W., Ravelosona, D., Klein, J., et al: ‘Domain wall shift register-based reconfigurable logic’, IEEE Trans. Magn., 2011, 47, pp. 29662969.
    10. 10)
      • 10. Zhao, W., Ben Romdhane, N., Zhang, Y., et al: ‘Racetrack memory based reconfigurable computing’. 2013 IEEE Faible Tension Faible Consommation (FTFC), 2013, pp. 14.
    11. 11)
      • 11. Behin-Aein, B., Wang, J.-P., Wiesendanger, R., et al: ‘Computing with spins and magnets’. MRS Bulletin 39.08, 2014, pp. 696702.
    12. 12)
      • 12. Dwivedi, A.K., Islam, A.: ‘Design of magnetic tunnel junction-based tunable spin torque oscillator at nanoscale regime’, IET Circuits Dev. Syst.., 2015, 10, (2), pp. 121129.
    13. 13)
      • 13. Liu, B., Cai, L., Zhu, J., et al: ‘On-chip readout circuit for nanomagnetic logic’, IET Circuits Dev. Syst., 2014, 8, pp. 6572.
    14. 14)
      • 14. Zhang, Y., Zhao, W., Lakys, Y., et al: ‘Compact modeling of perpendicular-anisotropy CoFeB/MgO magnetic tunnel junctions’, IEEE Trans. Electron Dev.59.3, 2012, pp. 819826.
    15. 15)
      • 15. Slonczewski, J.C.: ‘Current-driven excitation of magnetic multilayers’, J. Magn. Magn. Mater., 1996, 159, (1), pp. L1L7.
    16. 16)
      • 16. Sun, J.: ‘Spin-current interaction with a monodomain magnetic body: a model study’, Phys. Rev. B, 2000, 62, p. 570.
    17. 17)
      • 17. Xiao, J., Zangwill, A., Stiles, M.: ‘Macrospin models of spin transfer dynamics’, Phys. Rev. B, 2005, 72, p. 014446.
    18. 18)
      • 18. Ashraf, R.: ‘Robust circuit & architecture design in the nanoscale regime’. PhD thesis, Portland State University, 2011.
    19. 19)
      • 19. Ouyang, M., Huang, J.-L., Cheung, C.L., et al: ‘Energy gaps in ‘metallic’ single-walled carbon nanotubes’, Science, 2001, 292, pp. 702705.
    20. 20)
      • 20. Dresselhaus, M., Dresselhaus, G., Saito, R.: ‘Carbon fibers based on C 60 and their symmetry’, Phys. Rev. B, 1992, 45, p. 6234.
    21. 21)
      • 21. Jasemi, M., Mirzaee, R.F., Navi, K., et al: ‘Voltage mirror circuit by carbon nanotube field effect transistors for mirroring dynamic random access memories in multiple-valued logic and fuzzy logic’, IET Circuits Dev. Syst., 2015, 9, pp. 343352.
    22. 22)
      • 22. Radosavljević, M., Lefebvre, J., Johnson, A.: ‘High-field electrical transport and breakdown in bundles of single-wall carbon nanotubes’, Phys. Rev. B, 2001, 64, p. 241307.
    23. 23)
      • 23. Zand, R., Roohi, A., Salehi, S., et al: ‘Scalable adaptive spintronic reconfigurable logic using area-matched MTJ design’, IEEE Trans. Circuits Syst. II, 2016, 63, (7), in press, pp. 678682.
    24. 24)
      • 24. ASU. Predicative Technology Model’:
    25. 25)
      • 25. Zhao, W., Cao, Y.: ‘New generation of predictive technology model for sub-45 nm early design exploration’, IEEE Trans. Electron Dev., 2006, 53, pp. 28162823.
    26. 26)
      • 26. Stanford University CNFET Model’: [Accessed 8 March 2017].
    27. 27)
      • 27. Fong, X., Choday, S.H., Georgios, P., et al: ‘Purdue nanoelectronics research laboratory magnetic tunnel junction model’,, 2014.
    28. 28)
      • 28. Chih, Y.D., Huang, C.Y., Lin, C.J., et al: ‘Adjusting reference resistances in determining MRAM resistance states’. U.S. Patent, 8,902,641, issued 2December 2014.
    29. 29)
      • 29. Li, X., Zhu, X., Hao, W.: ‘Fast MTJ switching write circuit for MRAM array’. U.S. Patent Application, 13/193,689, filedJanuary 2013.

Related content

This is a required field
Please enter a valid email address