Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Efficient and low-complexity hardware architecture of Gaussian normal basis multiplication over GF(2 m ) for elliptic curve cryptosystems

In this paper, an efficient high-speed architecture of Gaussian normal basis (GNB) multiplierover binary finite field GF(2 m ) is presented. The structure is constructed by using some regular modules for computation of exponentiation by powers of 2 and low-cost blocks for multiplication by normal elements of the binary field. For the powers of 2 exponents, the modules are implemented by some simple cyclic shifts in the normal basis representation. As a result, the multiplier has a simple structure with a low critical path delay. The efficiency of the proposed multiplier is examined in terms of area and time complexity based on its implementation on Virtex-4 field programmable gate array family and also its application specific integrated circuit design in 180 nm complementary metal–oxide–semiconductor technology. Comparison results with other structures of the GNB multiplier verify that the proposed architecture has better performance in terms of speed and hardware utilisation.

References

    1. 1)
    2. 2)
      • 14. Wang, Z., Wang, X., Fan, S.: ‘Concurrent error detection architectures for field multiplication using Gaussian normal basis’. Proc. of Information Security, Practice and Experience (ISPEC), 2010(LNCS, 6047), pp. 96109.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • 2. Horng, J.S., Jou, I.C., Lee, C.Y.: ‘On complexity of normal basis multiplier using modified Booth's algorithm’. Proc. Seventh WSEAS Int. Conf. on Applied Informatics and Communications, Athens, Greece, 24–26 August 2007, pp. 1217.
    7. 7)
    8. 8)
      • 26. IEEE P1363: Editorial Contribution to standard for Public Key Cryptography, 2003.
    9. 9)
    10. 10)
      • 18. Kwon, S.: ‘A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type II’. Proc. 16th IEEE Symp. Computer Arithmetic, June 2003, pp. 196202.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 21. Sukcho, Y., Yeon Choi, J.: ‘Anew word-parallel bit-serial normal basis multiplier over GF(2m)’, Int. J. Control Autom., 2013, 6, (3), pp. 209216.
    15. 15)
      • 12. Wun Chiou, C., Lee, C.Y., Yeh, Y.C.: ‘Sequential type-I optimal normal basis multiplier and multiplicative inverse in GF(2m)’, Tamkang J. Sci. Eng., 2010, 13, (4), pp. 423432.
    16. 16)
    17. 17)
      • 27. Federal Information Processing Standards Publications (FIPS)186-2, U.S. Department of Commerce/NIST: Digital Signature Standard (DSS), 2000.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • 19. Lee, C., Chang, P.: ‘Digit-serial Gaussian normal basis multiplier over GF(2m) using Toeplitz matrix-approach’. Proc. Int. Conf. Computational Intelligence and Software Engineering (CiSE), 2009, pp. 14.
    25. 25)
    26. 26)
      • 5. Azarderakhsh, R., Reyhani-Masoleh, A.: ‘A Modified low complexity digit-level Gaussian normal basis multiplier’. Proc. Third Int. Workshop Arithmetic of Finite Fields (WAIFI), June 2010, pp. 2540.
    27. 27)
    28. 28)
    29. 29)
      • 32. Hosseinzadeh-Namin, A., Wu, H., Ahmadi, M.: ‘High speed word-parallel bit-serial normal basis finite field multiplier and its FPGA implementation’. Thirty-Ninth Asilomar Conf. on Signals, Systems and Computers, 28 October–1 November 2005, pp. 13381341.
    30. 30)
    31. 31)
    32. 32)
      • 31. Novotny, M., Schmidt, J.: ‘General digit-serial normal basis multiplier with distributed overlap’. 10th Euromicro Conf. on Digital System Design Architectures, Methods and Tools, 29–31 August 2007, pp. 94101.
    33. 33)
      • 1. Hankerson, D., Menezes, A., Vanstone, S.: ‘Guide to elliptic curve cryptography’ (Springer-Verlag, New York, 2004, 1st edn.).
    34. 34)
      • 30. Grabbe, C., Bednara, M., Teich, J., et al: ‘FPGA designs of parallel high performance GF(2233) multipliers’. Proc. Int. Symp. on Circuits and Systems, 25–28 May 2003, pp. 268271.
    35. 35)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0337
Loading

Related content

content/journals/10.1049/iet-cds.2015.0337
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address