access icon free AS8-static random access memory (SRAM): asymmetric SRAM architecture for soft error hardening enhancement

Soft errors in semiconductor memories occur due to charged particle strikes on sensitive nodes. Technology and voltage scaling increased dramatically the susceptibility of static random access memories (SRAMs) to soft errors. In this study, the authors present AS8-SRAM, a new asymmetric memory cell that enhances the soft error resilience of SRAMs by increasing the cells critical charge. They run Simulation Program with Integrated Circuit Emphasissimulations and system level experiments to validate the AS8-SRAM cell characteristics at circuit level and evaluate the energy and reliability effectiveness of an AS8-SRAM-based cache memory. The authors’ results show that AS8-SRAM presents up to 58 times less failures in time compared to six-transistor SRAM. Moreover, based on embedded benchmarks experimentations, AS8-SRAM achieves up to 22% reduction in energy-delay product without any considerable loss in performance.

Inspec keywords: scaling circuits; cache storage; radiation hardening (electronics); integrated circuit reliability; SRAM chips

Other keywords: charged particle; AS8-static random access memory; voltage scaling; technology scaling; soft error hardening enhancement; asymmetric SRAM architecture; asymmetric memory cell; soft error resilience; integrated circuit emphasis simulations; reliability effectiveness; sensitive nodes; AS8-SRAM-based cache memory

Subjects: Memory circuits; Semiconductor storage; Pulse circuits; Radiation effects (semiconductor technology)

References

    1. 1)
    2. 2)
      • 7. Chakraborty, A., Homayoun, H., Khajeh, A., et al: ‘E mc2: Less energy through multi-copy cache’. Proc. 2010 Int. Conf. on Compilers, Architectures and Synthesis for Embedded Systems, ser. CASES ‘10, 2010.
    3. 3)
    4. 4)
      • 5. Guena, P.: ‘A cache primer’, Application Note, Freescale Semiconductors, 2004.
    5. 5)
    6. 6)
    7. 7)
      • 28. Guthaus, M.R., Ringenberg, J.S., Ernst, D., et al: ‘Mibench: A free, commercially representative embedded benchmark suite’. Proc. Workload Characterization 2001. WWC-4. 2001 IEEE Int. Workshop, 2001.
    8. 8)
      • 25. Austin, T., Larson, E., Ernst, D.: ‘Simplescalar: an infrastructure for computer system modeling’. IEEE Computer, February 2002, vol. 35, no. 2.
    9. 9)
      • 24. Flautner, K., Kim, N.S., Martin, S., et al: ‘Drowsy chaches: simple techniques for reducing leakage power’. IEEE Int. Symp. on Computer Architecture, ser. ISCA ‘02, 2002.
    10. 10)
    11. 11)
      • 26. Brooks, V.T.D., Martonos, D.: ‘Wattch: a framework for architecture level power analysis and optimizations’. Proc. Int. Symp. of Computer Architecture, 2000.
    12. 12)
    13. 13)
      • 3. Anghel, L., Nicolaidis, M.: ‘Cost reduction and evaluation of a temporary faults detecting technique’. Design, Automation and Test in Europe Conf. and Exhibition 2000, ser. DATE, 2000.
    14. 14)
      • 14. Liu, X., Pan, L., Zhao, X., et al: ‘A novel soft error immunity sram cell’. IEEE Int. Integrated Reliability Workshop Final Report, 2013, ser. IRW ‘13, October 2013.
    15. 15)
      • 23. Jahinuzzaman, S.: ‘Modeling and mitigation of soft errors in nanoscale srams’. PhD dissertation, University of Waterloo, 2008.
    16. 16)
      • 8. Alouani, I., Niar, S., Kurdahi, F., et al: ‘Parity-based mono-copy cache for low power consumption and high reliability’. 23rd IEEE Int. Symp. on Rapid System Prototyping (RSP), 2012, October 2012.
    17. 17)
    18. 18)
    19. 19)
      • 2. Semiconductor industry association, international technology roadmap for semiconductors. Available: http://www.itrs.net.
    20. 20)
    21. 21)
      • 22. Predictive technology model (ptm) website. Available at: http://ptm.asu.edu.
    22. 22)
    23. 23)
    24. 24)
      • 13. Gill, B.S., Papachristou, C., Wolff, F.G.: ‘A new asymmetric sram cell to reduce soft errors and leakage power in fpga’. Design, Automation and Test in Europe Conf. and Exhibition 2007, ser. DATE'07, April 2007.
    25. 25)
    26. 26)
      • 6. Gherman, V., Evain, S., Seymour, N., et al: ‘Generalized parity-check matrices for sec-ded codes with fixed parity’. IEEE 17th Int. On-Line Testing Symp. (IOLTS), 2011, July 2011, pp. 198201.
    27. 27)
      • 11. Nisar, M.M., Barlas, I., Roemer, M.: ‘Analysis and asymmetric sizing of cmos circuits for increased transient error tolerance’. AIAA Infotech@Aerospace 2010, Atlanta, Georgia, 2010.
    28. 28)
      • 27. Spec cpu2000 benchmarks. Available at: http://www.spec.org/cpu2000/index.html.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0318
Loading

Related content

content/journals/10.1049/iet-cds.2015.0318
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading