access icon free Self-supporting graphene films and their applications

Graphene, a self-supporting monolayer, has excited enormous interest over the 10 years since its discovery due to its remarkable electrical, mechanical thermal and chemical properties. Here the authors describe the authors’ work developing chemical vapour deposition methods to grow monolayer graphene on copper foil substrates and the subsequent transfer process. Raman microscopy, scanning electron microscopy and atomic force microscopy are used to examine the quality of the transferred material. To demonstrate the process, they also describe transfer onto patterned SiO2/Si substrate which forms free suspended graphene drums. These show interesting mechanical properties which are being explored as nanomechanical resonators.

Inspec keywords: micromechanical resonators; thermal properties; scanning electron microscopy; graphene; monolayers; atomic force microscopy; chemical vapour deposition; foils; mechanical properties; copper

Other keywords: nanomechanical resonator; scanning electron microscopy; atomic force microscopy; subsequent transfer process; self-supporting graphene film; chemical vapour deposition method; SiO2-Si; thermal property; suspended graphene drum; self-supporting monolayer; mechanical property; Raman microscopy; copper foil substrate; electrical property; chemical property

Subjects: Fullerenes, carbon nanotubes, and related materials (engineering materials science); MEMS and NEMS device technology; Chemical vapour deposition

References

    1. 1)
    2. 2)
    3. 3)
      • 30. Carlsson, J.-O., Martin, P.: ‘Chemical vapor deposition’, in Martin, P.M. (Ed.): ‘Handbook of Deposition Technologies for Films and Coatings: Science, Applications and Technology’ (Elsevier Inc., Oxford, 2010, 3rd edn.), p. 406.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
      • 1. Ovid'ko, I.: ‘Mechanical properties of graphene’, Rev. Adv. Mater. Sci., 2013, 34, pp. 111.
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
      • 42. Hao, L., Gallop, J., Chen, J.: ‘Near-field microwave excitation and detection of nems resonators’. 12th IEEE Conf. on Nanotechnology (IEEE-NANO), 2012, 2012, pp. 15.
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
      • 16. Baker, J.: ‘Graphene at manchester: the route to commercialisation’. Graphene & 2D Materials Conf.: From Research to Applications 2014, National Physical Laboratory, Teddington, UK, November 2014.
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
      • 23. Gupta, P., Dongare, P.D., Grover, S., et al: ‘A facile process for soak-and-peel delamination of cvd graphene from substrates using water’, Sci. Rep., 2014, 4, p. 3882.
    34. 34)
    35. 35)
    36. 36)
      • 32. Gajewski, K., Gotszalk, T., Sierakowski, A., et al: ‘Microfabricated support structures for investigations of mechanical and electrical graphene properties’. Int. Society for Optics and Photonics Electron Technology Conf. 2013, 2013, pp. 89020G89020G.
    37. 37)
    38. 38)
    39. 39)
      • 33. Vig, J.R.: ‘Ultraviolet-ozone cleaning of semiconductor surfaces’, Technical report, DTIC Document, 1992.
    40. 40)
    41. 41)
    42. 42)
    43. 43)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0149
Loading

Related content

content/journals/10.1049/iet-cds.2015.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading