http://iet.metastore.ingenta.com
1887

Electronic applications of graphene mechanical resonators

Electronic applications of graphene mechanical resonators

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Graphene, an atomically thin two-dimensional material has become an ideal candidate for fabricating nano-electro-mechanical systems resonators because of its excellent mechanical properties and ultra-light weight. Its high tensile strength and Young's modulus coupled with the ability to withstand high strains while functioning make it suitable for use in mechanical resonators. In this study, the authors review the electronic applications of graphene mechanical resonators for future radio frequency communications, ultra-sensitive mass and temperature detection using the consequent changes in resonance frequency of the resonators. Moreover, they experimentally establish the non-linear characteristics of graphene mechanical resonators at high driving amplitudes and envision its applications in future electronics and sensing.

References

    1. 1)
    2. 2)
    3. 3)
      • 3. Wilson, M.: ‘Electrons in atomically thin carbon sheets behave like massless particles’, Phys. Today, 2006, 59, p. 21.
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 9. Poot, M., van der Zan, H.S.J.: ‘Nanomechanical properties of few-layer graphene membranes’. PhD Thesis, Delft University, February 14, 2013.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 28. Xu, Y., Li, O., Xu, R.: ‘Graphene resonant channel transistor’, 978–1–4673-2141-9/13, IEEE, 2013.
    27. 27)
      • 29. Sebastian Anthony doi: 10.1038/ncomms2830 – ‘broadband high photo-response from pure monolayer graphene photo-detector’.
    28. 28)
    29. 29)
    30. 30)
      • 32. Leaks, M., Lee, S., Cha, W., et al: ‘Noise modeling of graphene resonant channel transistors’, accepted by IEEE 0018-9383, 2015.
    31. 31)
    32. 32)
      • 34. Roukes, M.L., Ekinci, K.L.: ‘Apparatus and method for ultrasensitive nanoelectromechanical mass detection’. US patent 6, 722, 200, 2004.
    33. 33)
    34. 34)
      • 36. Feng, X.L.: ‘Ultrahigh frequency nanoelectromechanical systems with low noise technologies for single molecule mass sensing’. PhD thesis, California Institute of Technology, 2006.
    35. 35)
    36. 36)
      • 38. Matheny, M.H., Villanueva, L.G., Karabalin, R.B., et al: ‘Nonlinear mode-coupling in nanomechanical systems’, Nano Lett., 2013, 13, pp. 16221626.
    37. 37)
      • 39. Lu, Y., Lal, A.: ‘Nanowire assisted frequency stabilization for nanowire array assembly oscillator’. MEMS, Taipei, Taiwan, January 20–24, 2013.
    38. 38)
      • 40. Lu, Y., Peng, S., Luo, D., et al: ‘Low-concentration mechanical biosensor based on a photonic crystal nanowire array’.
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0134
Loading

Related content

content/journals/10.1049/iet-cds.2015.0134
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address