access icon openaccess Is graphene a good transparent electrode for photovoltaics and display applications?

The current standard material used for transparent electrodes in displays, touch screens and solar cells is indium tin oxide (ITO) which has low sheet resistance (10 Ω/□), high optical transmission in the visible wavelength (85%) and does not suffer of optical haze. However, ITO is mechanically rigid and incompatible with future demands for flexible applications. Graphene materials share many of the properties desirable for flexible transparent conductors, including high optical transparency, high mechanical flexibility and strength. Whilst pristine graphene is not a good transparent conductor, functionalised graphene is at least 1000 times a better conductor than its pristine counterpart and it outperforms ITO. Here the authors review recent work on a novel graphene-based conductor with sheet resistance as low as 8.8 Ω/□ and 84% optical transmission. This material is obtained by ferric chloride (FeCl3) intercalation into few-layer-graphene (FLG), giving rise to a new system which is the best known flexible and transparent electricity conductor. FeCl3-FLG shows no significant changes in the electrical and structural properties for a long exposure to air, to high levels of humidity and at temperatures of up to 150°C in atmosphere. These properties position FeCl3-FLG as a viable and attractive replacement to ITO.

Inspec keywords: conductors (electric); visible spectra; photovoltaic cells; electrodes; indium compounds; graphene devices; display devices

Other keywords: C; optical transparency; flexible material; ferric chloride; structural properties; flexible transparent conductors; mechanical strength; current standard material; graphene-based conductor; functionalised graphene; transparent material; ITO; display applications; sheet resistance; indium tin oxide; solar cells; transparent electrode; touch screens; optical transmission; photovoltaics applications; electrical properties; visible wavelength; mechanical flexibility

Subjects: Fullerene, nanotube and related devices; Conductors; Display technology; Photoelectric devices

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 33. Russo, S., Craciun, M.F., Bointon, T.H.: ‘Doped graphene’. International Patent WO2015049490 (A1), April 2015.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
      • 43. ‘Kapton® PV9100 Series – Du Pont products’ http://www.dupont.com/products-and-services/membranes-films/polyimide-films/brands/kapton-polyimide-film/products/kapton-pv9100-series.html, accessed 12 May 2015.
    28. 28)
    29. 29)
    30. 30)
    31. 31)
      • 62. Withers, F., Bointon, T.H., Craciun, M.F., et al: ‘Detector’. International Patent WO2014111702 (A2), July 2014.
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
      • 61. Russo, S., Craciun, M.F.: ‘Graphene-based material’. US Patent US2014174513 (A1), June 2014.
    52. 52)
      • 59. GraphExeter-University of Exeter’http://www.exeter.ac.uk/business/ip/commercial/graphexeter/, accessed 12 May 2015.
    53. 53)
      • 22. Boa, W., Wan, J., Han, X., et al: ‘Approaching the limits of transparency and conductivity in graphitic materials through lithium intercalation’, Nat. Commun., 2014, 5, p. 4224.
    54. 54)
      • 60. Russo, S., Craciun, M.F.: ‘Graphene-based material’. Korean Patent KR20140095614 (A), August 2014.
    55. 55)
    56. 56)
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0121
Loading

Related content

content/journals/10.1049/iet-cds.2015.0121
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading