http://iet.metastore.ingenta.com
1887

Charge transport mechanism of hydrazine hydrate reduced graphene oxide

Charge transport mechanism of hydrazine hydrate reduced graphene oxide

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Chemically assisted graphene oxide (GO) is synthesised by improved Hummers’ method. It has been further reduced by hydrazine hydrate by hydrothermal method to form reduced GO (rGO). Raman spectra of GO and rGO suggest the formation of D-band and G-band at 1360 and 1590 cm−1, respectively. Along with D and G modes, 2D and D′ + G′ modes have been observed at 2710 and 2950 cm−1, respectively. Tuinstra and Koenig relation is used to calculate the relative size of the sp2-carbon domain. Scanning electron micrographs reveal the separation of flakes during reduction. The dc conductivity measurement covers the peculiar study of conduction mechanism of rGO. On reduction, a remarkable increase in the room temperature conductivity (from 4.25 × 10−10 to1.9 × 10−2 S/cm) of GO has been observed. The accomplish study of dc conductivity measurement of rGO in the temperature range of 77–400 K is reported. It is explained on the basis of 3D variable range hopping model. The slope of a plot between activation energy and temperature on logarithmic scale is found to be 0.75 which suits well with the theoretical result.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 22. Lu, G., Ocola, L.E., Chen, J.: ‘Reduced graphene oxide for room temperature gas sensors’, Nanotechnology, 2009, 20, pp. 9.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • 57. Mott, N.F., Davis, E.A.: ‘Electronic processes in non-crystalline materials’ (Clarendon Press, Oxford, 1979, 2nd edn).
    58. 58)
    59. 59)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2015.0034
Loading

Related content

content/journals/10.1049/iet-cds.2015.0034
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address