Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Voltage mirror circuit by carbon nanotube field effect transistors for mirroring dynamic random access memories in multiple-valued logic and fuzzy logic

In this paper, a new voltage mirror circuit by using carbon nanotubes (CNTs) technology is presented. This circuit is specifically proposed for the application of duplicating multiple-valued and fuzzy dynamic random access memories. The given structure prevents any voltage drop for the capacitor inside the memory cell. As a result, any fanout circuit can be driven. The new structure can be utilised for different multiple-valued logic systems without a change. The unique characteristics of carbon nanotube field effect transistor (CNFET) technology are exploited in this paper to meet the desired design goals. It demonstrates the potentials of CNFET technology in a realistic very large-scale integration application. The proposed design is highly tolerant to D CNT variation and it is also immune to misaligned CNTs. Simulation results demonstrate that it provides sufficient driving capability with reasonable accuracy.

References

    1. 1)
    2. 2)
      • 28. Kim, Y.B., Kim, Y.-B., Lombardi, F.: ‘A novel design methodology to optimize the speed and power of the CNTFET circuits’. Proc. IEEE Int. Midwest Symp. Circuits and Systems, Cancun, 2009, pp. 11301133.
    3. 3)
      • 50. Stanford University CNFET Model website, 2008.
    4. 4)
    5. 5)
    6. 6)
      • 3. Zilouchian, A., Jamshidi, M.: ‘Intelligent control systems using soft computing methodologies’ (CRC Press, 2001).
    7. 7)
    8. 8)
      • 11. Lam, Y.H., Ki, W.H., Tsui, C.Y.: ‘Symmetrically matched voltage mirror and applications therefor’. US Patent, US 7,215,187 B2, 2007.
    9. 9)
      • 17. Pable, S.D., Imran, A., Hasan, M.: ‘Performance optimization of CNFET based subthreshold circuits’. Annual IEEE India Conf., Kolkata, 2010, pp. 14.
    10. 10)
    11. 11)
    12. 12)
    13. 13)
      • 19. Marulanda, J.M., Srivastava, A., Yellampalli, S.: ‘Numerical modeling of the I-V characteristics of carbon nanotube field effect transistors’. 40th Southeastern Symp. System Theory, New Orleans, 2008, pp. 235238.
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
    22. 22)
      • 9. Lin, S., Kim, Y.B., Lombardi, F., Lee, Y.J.: ‘A new SRAM cell design using CNTFETs’. Proc. Int. SoC Design Conf., Busan, 2008, pp. 11681171.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 33. Saito, R., Dresselhaus, G., Dresselhaus, M.: ‘Physical properties of carbon nanotubes’ (Imperial Collage Press, London, UK, 1998).
    27. 27)
      • 30. Deng, J.: ‘Device modeling and circuit performance evaluation for nanoscale devices: silicon technology beyond 45 nm node and carbon nanotube field effect transistors’. Ph.D. thesis, Department of Electrical Engineering and The Committee on Graduate Studies of Stanford University, 2007.
    28. 28)
    29. 29)
    30. 30)
      • 8. Jayashree, H.V., Sai Shruthi, V.P.: ‘Ternary SRAM for low power applications’. Int. Symp. Communication, Information & Computing Technology, Mumbai, 2012, pp. 16.
    31. 31)
    32. 32)
    33. 33)
    34. 34)
      • 29. Algul, B.P., Kodera, T., Oda, S., Uchida, K.: ‘Study on device parameters of carbon nanotube field electron transistors to realize steep subthreshold slope of less than 60 mV/Decade’, Jap. J. Appl. Phys., 2011, 50, (04DN01), pp. 14.
    35. 35)
      • 2. Hajek, P.: ‘Fuzzy logic’ (Stanford Encyclopaedia of Philosophy, Stanford University, 2010).
    36. 36)
      • 20. The International Technology Roadmap for Semiconductors (ITRS), 2009.
    37. 37)
      • 42. Ding, L., Zhang, Z., Liang, S., et al: ‘CMOS-based carbon nanotube pass-transistor logic integrated circuits’, Nat. Commun., 2012, 3, pp. 17.
    38. 38)
    39. 39)
      • 12. Chi, M.-H.: ‘Challenges in manufacturing FinFET at 20 nm node and beyond’ (Globalfoundries, 2012).
    40. 40)
    41. 41)
    42. 42)
      • 49. Patil, N., Deng, J., Wong, H.-S.P., Mitra, S.: ‘Automated design of misaligned-carbon-nanotube-immune circuits’. 44th ACM/IEEE Design Automation Conf., 2007, pp. 958961.
    43. 43)
      • 7. Mirzaee, R.F., Moaiyeri, M.H., Maleknejad, M., Navi, K., Hashemipour, O.: ‘Dramatically low-transistor-count high-speed ternary adders’. IEEE 43rd Int. Symp. Multiple-Valued Logic, Toyama, 2013, pp. 170175.
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
      • 47. Stoliarov, S.I., Nyden, M.R.: ‘Molecular mechanics calculations of the thermodynamic stabilities of polymer-carbon nanotube composites’, in (Eds.): ‘Flame retardant polymer nanocomposites’ (John Wiley & Sons, 2007), pp. 89106.
    49. 49)
    50. 50)
      • 10. Dhande, A.P., Ingole, V.T.: ‘Design & implementation of 2-bit ternary ALU slice’. Third Int. Conf. Sciences of Electronics, Technologies of Information and Telecommunications, 2005, pp. 1721.
    51. 51)
      • 14. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: ‘Sub-threshold design for ultra-low-power systems’ (Springer, 2006).
    52. 52)
    53. 53)
      • 53. Shahidipour, H., Ahmadi, A., Maharatna, K.: ‘Effect of variability in SWCNT-based logic gates’. Proc. Int. Symp. Integrated Circuits, Singapore, 2009, pp. 252255.
    54. 54)
      • 15. Paul, S.: ‘Design and implementation of a sub-threshold wireless BFSK transmitter’. M.Sc. thesis, The Office of Graduate Studies of Texas A&M University, 2007.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0295
Loading

Related content

content/journals/10.1049/iet-cds.2014.0295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address