http://iet.metastore.ingenta.com
1887

Voltage mirror circuit by carbon nanotube field effect transistors for mirroring dynamic random access memories in multiple-valued logic and fuzzy logic

Voltage mirror circuit by carbon nanotube field effect transistors for mirroring dynamic random access memories in multiple-valued logic and fuzzy logic

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this paper, a new voltage mirror circuit by using carbon nanotubes (CNTs) technology is presented. This circuit is specifically proposed for the application of duplicating multiple-valued and fuzzy dynamic random access memories. The given structure prevents any voltage drop for the capacitor inside the memory cell. As a result, any fanout circuit can be driven. The new structure can be utilised for different multiple-valued logic systems without a change. The unique characteristics of carbon nanotube field effect transistor (CNFET) technology are exploited in this paper to meet the desired design goals. It demonstrates the potentials of CNFET technology in a realistic very large-scale integration application. The proposed design is highly tolerant to D CNT variation and it is also immune to misaligned CNTs. Simulation results demonstrate that it provides sufficient driving capability with reasonable accuracy.

References

    1. 1)
    2. 2)
      • 2. Hajek, P.: ‘Fuzzy logic’ (Stanford Encyclopaedia of Philosophy, Stanford University, 2010).
    3. 3)
      • 3. Zilouchian, A., Jamshidi, M.: ‘Intelligent control systems using soft computing methodologies’ (CRC Press, 2001).
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 7. Mirzaee, R.F., Moaiyeri, M.H., Maleknejad, M., Navi, K., Hashemipour, O.: ‘Dramatically low-transistor-count high-speed ternary adders’. IEEE 43rd Int. Symp. Multiple-Valued Logic, Toyama, 2013, pp. 170175.
    8. 8)
      • 8. Jayashree, H.V., Sai Shruthi, V.P.: ‘Ternary SRAM for low power applications’. Int. Symp. Communication, Information & Computing Technology, Mumbai, 2012, pp. 16.
    9. 9)
      • 9. Lin, S., Kim, Y.B., Lombardi, F., Lee, Y.J.: ‘A new SRAM cell design using CNTFETs’. Proc. Int. SoC Design Conf., Busan, 2008, pp. 11681171.
    10. 10)
      • 10. Dhande, A.P., Ingole, V.T.: ‘Design & implementation of 2-bit ternary ALU slice’. Third Int. Conf. Sciences of Electronics, Technologies of Information and Telecommunications, 2005, pp. 1721.
    11. 11)
      • 11. Lam, Y.H., Ki, W.H., Tsui, C.Y.: ‘Symmetrically matched voltage mirror and applications therefor’. US Patent, US 7,215,187 B2, 2007.
    12. 12)
      • 12. Chi, M.-H.: ‘Challenges in manufacturing FinFET at 20 nm node and beyond’ (Globalfoundries, 2012).
    13. 13)
    14. 14)
      • 14. Wang, A., Calhoun, B.H., Chandrakasan, A.P.: ‘Sub-threshold design for ultra-low-power systems’ (Springer, 2006).
    15. 15)
      • 15. Paul, S.: ‘Design and implementation of a sub-threshold wireless BFSK transmitter’. M.Sc. thesis, The Office of Graduate Studies of Texas A&M University, 2007.
    16. 16)
    17. 17)
      • 17. Pable, S.D., Imran, A., Hasan, M.: ‘Performance optimization of CNFET based subthreshold circuits’. Annual IEEE India Conf., Kolkata, 2010, pp. 14.
    18. 18)
    19. 19)
      • 19. Marulanda, J.M., Srivastava, A., Yellampalli, S.: ‘Numerical modeling of the I-V characteristics of carbon nanotube field effect transistors’. 40th Southeastern Symp. System Theory, New Orleans, 2008, pp. 235238.
    20. 20)
      • 20. The International Technology Roadmap for Semiconductors (ITRS), 2009.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
      • 28. Kim, Y.B., Kim, Y.-B., Lombardi, F.: ‘A novel design methodology to optimize the speed and power of the CNTFET circuits’. Proc. IEEE Int. Midwest Symp. Circuits and Systems, Cancun, 2009, pp. 11301133.
    29. 29)
      • 29. Algul, B.P., Kodera, T., Oda, S., Uchida, K.: ‘Study on device parameters of carbon nanotube field electron transistors to realize steep subthreshold slope of less than 60 mV/Decade’, Jap. J. Appl. Phys., 2011, 50, (04DN01), pp. 14.
    30. 30)
      • 30. Deng, J.: ‘Device modeling and circuit performance evaluation for nanoscale devices: silicon technology beyond 45 nm node and carbon nanotube field effect transistors’. Ph.D. thesis, Department of Electrical Engineering and The Committee on Graduate Studies of Stanford University, 2007.
    31. 31)
    32. 32)
    33. 33)
      • 33. Saito, R., Dresselhaus, G., Dresselhaus, M.: ‘Physical properties of carbon nanotubes’ (Imperial Collage Press, London, UK, 1998).
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • 42. Ding, L., Zhang, Z., Liang, S., et al: ‘CMOS-based carbon nanotube pass-transistor logic integrated circuits’, Nat. Commun., 2012, 3, pp. 17.
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
      • 47. Stoliarov, S.I., Nyden, M.R.: ‘Molecular mechanics calculations of the thermodynamic stabilities of polymer-carbon nanotube composites’, in (Eds.): ‘Flame retardant polymer nanocomposites’ (John Wiley & Sons, 2007), pp. 89106.
    48. 48)
    49. 49)
      • 49. Patil, N., Deng, J., Wong, H.-S.P., Mitra, S.: ‘Automated design of misaligned-carbon-nanotube-immune circuits’. 44th ACM/IEEE Design Automation Conf., 2007, pp. 958961.
    50. 50)
      • 50. Stanford University CNFET Model website, 2008.
    51. 51)
    52. 52)
    53. 53)
      • 53. Shahidipour, H., Ahmadi, A., Maharatna, K.: ‘Effect of variability in SWCNT-based logic gates’. Proc. Int. Symp. Integrated Circuits, Singapore, 2009, pp. 252255.
    54. 54)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0295
Loading

Related content

content/journals/10.1049/iet-cds.2014.0295
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address