access icon free Approach for third order quadrature oscillator realisation

This paper presents a new approach for third order quadrature oscillator (QO) realisation. It uses a high pass filter and differentiator connected in a feedback loop. A differential voltage current conveyor transconductance amplifier (DVCCTA) is employed to verify the proposed approach. Two circuit topologies of QO have been proposed. Both the topologies utilise two DVCCTA and three grounded capacitors. In addition, the first topology employs a single resistor while the second makes use of two resistors. The circuits exhibit orthogonal control on frequency and condition of oscillation. The quadrature current outputs are available at high output impedance and voltage outputs are also present. The theoretical proposition has been verified through SPICE simulations using 0.25 μm Taiwan semiconductor manufacturing company (TSMC) complementary metal oxide semiconductor (CMOS) technology parameters. Experimental results are also included which corroborate the theoretical propositions and simulated results.

Inspec keywords: operational amplifiers; circuit feedback; current conveyors; oscillators; CMOS analogue integrated circuits

Other keywords: quadrature current outputs; SPICE simulations; QO realisation; differentiator; TSMC CMOS technology parameters; high pass filter; feedback loop; differential voltage current conveyor transconductance amplifier; three grounded capacitors; third order quadrature oscillator realisation; circuit topology; size 0.25 mum; DVCCTA; high output impedance; voltage outputs; orthogonal control; single resistor

Subjects: Amplifiers; Oscillators; Active filters and other active networks; CMOS integrated circuits

References

    1. 1)
      • 19. Dazzo, J.J., Houppis, C.: ‘Linear control system: analysis and design’ (McGraw-Hill, New York, 1995, 4th edn.).
    2. 2)
      • 5. Hajder, T.: ‘Higher order loops improve phase noise of feedback oscillators’, Appl Microw. Wirel., 2002, 14, pp. 2431.
    3. 3)
    4. 4)
    5. 5)
    6. 6)
    7. 7)
      • 32. Pandey, N., Paul, S.K.: ‘Analog filters based on 0.25 μm CMOS differential voltage current conveyor Transconductance Amplifier (DVCCTA)’. Proc. India Int. Conf. on Power Electronics, 2010, pp. 14.
    8. 8)
      • 22. Palumbo, G., Pennisi, S.: ‘Filter circuits synthesis with CFOA-based differentiators’. Proc. IMTC/99, 1999, 1, pp. 546550.
    9. 9)
      • 27. Jantakun, A., Pisutthipong, N., Siripruchyanun, M.: ‘A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs’. Proc. Sixth Int. Conf. on Electrical Engineering/ Electronics, Computer, Telecommunications, and Information Technology (ECTI-CON 2009), 2009, pp. 560563.
    10. 10)
    11. 11)
      • 15. Kwawsibsam, A., Sreewirote, B., Jaikla, W.: ‘Third-order voltage-mode Quadratrue oscillator using DDCC and OTAs’. Int. Conf. on Circuits, System and Simulation, 2011, pp. 317321.
    12. 12)
      • 29. Sedra, A.S., Smith, K.C.: ‘Microelectronic circuits’ (Oxford University Press, 2004).
    13. 13)
    14. 14)
    15. 15)
    16. 16)
      • 26. Lawanwisut, S., Siripruchyanun, M.: ‘An active-only high-output impedance current mode quadrature oscillator using CCCCTA based-lossless differentiators’. Proc. IEEE Region 10 Conf. TENCON, 2009, pp. 14.
    17. 17)
    18. 18)
      • 4. Horng, J.W.: ‘Current-mode third-order quadrature oscillator using CDTAs’, Active and Passive Electronic Components, 2009, Article ID 789171, pp. 15.
    19. 19)
      • 12. Horng, J.W., Lee, H., Wu, J.Y.: ‘Electronically tunable third-order quadrature oscillator using CDTAs’, Radioengineering, 2010, 19, pp. 326330.
    20. 20)
      • 17. Duangmalai, D., Jaikla, W.: ‘Realization of current-mode quadrature oscillator based on third order technique’, ACEEE Int. J. Electr. Power Eng., 2011, 2, pp. 4649.
    21. 21)
      • 16. Kumngern, M., Junnapiya, S.: ‘Current-mode third-order quadrature oscillator using minimum elements’. 2011 Int. Conf. on Electrical Engineering and Informatics, 2011, pp. 14.
    22. 22)
      • 6. Horng, J.W.: ‘Quadrature oscillators using operational amplifiers’, Active and Passive Electronic Components, 2011, Article ID 320367, DOI:10.1155/2011/32036.
    23. 23)
    24. 24)
    25. 25)
    26. 26)
      • 23. Wu, C.Y., Cheng, Y., Gong, J.: ‘The new CMOS 2 V low power IF fully differential R -C band pass amplifier for RF wireless receivers’. Proc. ISCAS00, II, 2000, pp. 633636.
    27. 27)
      • 14. Lawanwisut, S., Siripruchyanun, M.: ‘High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs’. TENCON 2009–2009 IEEE Region 10 Conf., 2009, pp. 14.
    28. 28)
      • 34. Gaxiola-Sosa, J.E., Hedayati, H., Pengcheng, L.V., Entesari, K.: ‘A CMOS inverse Chebyshev channel selection filter for extravehicular activity (EVA) radio receivers’. Proc. IEEE 56th Int. Midwest Symposium on Circuits and Systems (MWSCAS), 2013, pp. 217220.
    29. 29)
      • 35. Peluso, V.F.: ‘Programmable capacitor bank for a voltage controlled oscillator’, US Patent 7084713 B2.
    30. 30)
    31. 31)
      • 10. Maheshwari, S., Verma, R.: ‘Electronically tunable sinusoidal oscillator circuit’, Act. Passive Electron. Compon., vol. 2012, Article ID 719376, p. 6DOI:10.1155/2012/719376, pp. 16.
    32. 32)
      • 13. Pandey, R., Pandey, N., Paul, S.K.: ‘MOS-C third order quadrature oscillator using OTRA’. Third International Conf. on Communication and Computer Technology, ICCCT-12, 2012, pp. 7780.
    33. 33)
    34. 34)
      • 7. Horng, J.W.: ‘Current/ Voltage mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitor’, Indian J. Pure Appl. Phys., 2011, 49, pp. 49498.
    35. 35)
    36. 36)
      • 25. Chen, J.J., Tsao, H.W., Liu, S.I.: ‘Parasitic- capacitance-insensitive current-mode filters using operational transresistance amplifiers’. IEE Proc. Circuits Devices and Systems, 1995, 142, pp. 186192.
    37. 37)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2014.0170
Loading

Related content

content/journals/10.1049/iet-cds.2014.0170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading