access icon free Multimedia traffic quality of service management using statistical and artificial intelligence techniques

Managing quality of service (QoS) is an important network operation, especially in hybrid wired and wireless multimedia networks. In this study, a two-stage approach to intelligently manage QoS for multimedia traffic was developed. Voice over Internet protocol (VoIP) was included in the study as an example of a typical multimedia application. Initially an adaptive statistical sampling technique was employed. It determined the traffic's statistics and used them in a fuzzy inference system to determine the optimum interval between every two consecutive sections of the traffic sampled. In the second stage, a fuzzy c-means (FCM) clustering was used to pre-process QoS parameters (delay, jitter and packet loss ratio) obtained from the devised sampling scheme. A multilayer perceptron (MLP) neural network then used the information from FCM to assess the QoS provided for VoIP.

It was shown that the developed adaptive statistical sampling represents the traffic more correctly than the systematic, stratified and random non-adaptive sampling methods. Also, the combination of statistical sampling followed by FCM and MLP accurately indicated the QoS for VoIP.

Inspec keywords: statistical analysis; sampling methods; multimedia communication; fuzzy reasoning; fuzzy neural nets; artificial intelligence; computer network management; telecommunication traffic; pattern clustering; quality of service; multilayer perceptrons; Internet telephony

Other keywords: VoIP; MLP neural network; wired multimedia network; jitter; adaptive statistical sampling technique; stratified nonadaptive sampling method; QoS; fuzzy inference system; multimedia traffic quality of service management; random nonadaptive sampling method; fuzzy c-means clustering; FCM clustering; artificial intelligence technique; multilayer perceptron neural network; wireless multimedia network; packet loss ratio; voice over internet protocol

Subjects: Other computer networks; Data handling techniques; Other topics in statistics; Computer communications; Knowledge engineering techniques; Other topics in statistics; Network management; Multimedia communications; Telephony; Neural computing techniques

References

    1. 1)
      • 9. Chen, B., Hu, J., Duan, L., Gu, Y.: ‘Network administrator assistance system based on fuzzy c-means analysis’, J. Adv. Comput. Intell. Intell Inform., 2009, 13, (2), pp. 9196.
    2. 2)
      • 5. Giertl, J., Jakab, F., Baca, J., Andoga, R., Mirilovic, M.: ‘Contribution to adaptive sampling of QoS parameters in computer networks’, Acta Electrotechn. Inf., 2006, 6, (1), pp. 18.
    3. 3)
      • 13. Mishra, R., Sharma, V.: ‘QoS routing in MPLS networks using active measurements’. Proc. Int. Conf. IEEE on Convergent Technologies for Asia-Pacific Region, 2003, pp. 323327.
    4. 4)
      • 27. ‘Network Simulator 2’. http://www.isi.edu/nsnam/ns, accessed March 2012.
    5. 5)
      • 14. Cranley, N., Davis, M.: ‘Performance evaluation of video streaming with background traffic over IEEE 802.11 WLAN networks’. Proc. Int. ACM Workshop on Wireless Multimedia Networking and Performance Modelling, 2005, pp. 131139.
    6. 6)
      • 11. Ting, B., Yong, W., Xiaoling, T.: ‘Network traffic classification based on kernel self-organizing maps’. Proc. Int. Conf. on Intelligent Computing and Integrated Systems, 2010, pp. 310314.
    7. 7)
      • 17. Dogman, A., Saatchi, R., Al-Khayatt, S.: ‘Evaluation of computer network quality of service using neural network’. Proc. Int. IEEE Symp. on Business, Engineering and Industrial Applications, 2012, pp. 217222.
    8. 8)
      • 23. Xie, X., Beni, G.: ‘A validity measure for fuzzy clustering’. Proc. Int. Conf. IEEE Pattern Analysis and Machine Intelligence, 1991, pp. 841847.
    9. 9)
      • 1. Mohamed, S., Rubino, G., Cervantes, F., Afifi, H.: ‘Real-time video quality assessment in packet networks: a neural network model’. Proc. Int. Conf. IEEE Transactions on Circuits and Systems for Video Technology, 2001, pp. 121.
    10. 10)
      • 20. Wang, P.Y., Yemini, Y., Florissi, D., Zinky, J., Florissi, P.: ‘Experimental QoS performances of multimedia applications’. Proc. Int. Conf. IEEE Computer and Communications Societies, 2000, pp. 970979.
    11. 11)
      • 8. Timo, L., Hannu, K., Tapani, H.: ‘Profiling network applications with fuzzy c-means clustering and SOM’. Proc. Int. Conf. on Fuzzy Systems and Knowledge Discovery, 2002, pp. 15.
    12. 12)
      • 10. Wang, T., Liang, Z., Zhao, C.: ‘A detection method for routing attacks of wireless sensor network based on fuzzy c-means clustering’. Proc. Int. Conf. IEEE on Fuzzy Systems and Knowledge Discovery, 2009, pp. 445449.
    13. 13)
      • 25. Karlik, B., Olgac, A.: ‘Performance analysis of various activation functions in generalized MLP architectures of neural networks’, Int. J. Artif. Intell. Expert Syst., 2010, 1, (4), pp. 111122.
    14. 14)
    15. 15)
      • 6. Ma, W., Huang, C., Yan, J.: ‘Adaptive sampling for network performance measurement under voice traffic’. Proc. Int. Conf. IEEE on Communications, 2004, pp. 11291134.
    16. 16)
      • 4. Claffy, K.C., Polyzos, G.C., Braun, H.W.: ‘Application of sampling methodologies to network traffic characterization’. Conf. Proc. Communications Architectures, Protocols and Applications, 1993, pp. 194203.
    17. 17)
      • 21. Saraireh, M., Saatchi, R., Al-Khayatt, S., Strachan, R.: ‘Assessment and improvement of quality of service using fuzzy logic and hybrid genetic-fuzzy approaches’, ACM, 2007, 27, (2), pp. 95111.
    18. 18)
      • 22. Al-Sbou, Y., Saatchi, R., Al-khayatt, S., Strachan, R.: ‘Quality of service assessment of multimedia traffic over wireless ad hoc networks’. Proc. Int. Conf. Communication Systems, Networks and Digital Signal Processing, 2006, pp. 129133.
    19. 19)
      • 24. Abraham, A.: ‘Artificial neural network’, in Sydenham, P., , Thorn, R. (eds.): ‘Handbook of measuring system design’ (John Wiley, 2005), pp. 901908.
    20. 20)
      • 15. Nogueira, A., Salvador, P., Valadas, R.: ‘Predicting the quality of service of wireless LANs using neural networks’. Proc. Int. ACM Symp. on Modelling, Analysis, and Simulation of Wireless and Mobile Systems ACM, New York, NY, USA, 2006, pp. 5260.
    21. 21)
    22. 22)
      • 3. Zseby, T.: ‘Comparison of sampling methods for non-intrusive SLA validation’. Second Workshop on End-to-End Monitoring Techniques and Services, 2004, pp. 18.
    23. 23)
    24. 24)
      • 29. ‘IEEE Computer Society LAN/MAN Standards Committee’, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements, 2005.
    25. 25)
      • 12. Palomar, D., Skehill, R., Rice, I., Picovici, D., McGrath, S.: ‘Objective assessment of audio quality’. Proc. Int. Conf. IET on Signals and Systems, 2008, pp. 3742.
    26. 26)
      • 19. ITU Recommendation, G.1010: ‘End-user multimedia QoS categories’. Telecommunication Standardization Sector of ITU, 2001, pp. 118.
    27. 27)
      • 26. Eberhart, R.C., Dobbins, R.W.: ‘Neural network PC tools: a practical guide’ (Academic Press, 1990).
    28. 28)
      • 28. ‘YUV QCIF Reference Videos’, http://www.tkn.tuberlin.de/research/evalvid/qcif.html, accessed January 2012.
    29. 29)
      • 7. Gan, Y., Zhang, Y., Qian, D.: ‘Adaptive sampling measurement for high speed network traffic flow’. Proc. Int. Conf. IEEE on Wireless Communications, Networking and Mobile Computing, 2009, pp. 40854088.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0454
Loading

Related content

content/journals/10.1049/iet-cds.2013.0454
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading