access icon free Non-linear integral control of photon power transients in optical communication networks with erbium-doped fibre amplifiers

In this study the authors present a novel technique for control of signal power transients caused by signal add/drops in optical communication networks with erbium-doped fibre amplifiers (EDFAs). The approach utilises the electronic automatic gain control that combines both feedback and feedforward control of EDFA. Feedback control is non-linear integral control and feedforward control is a steady-state gain scheduling technique. The feedback non-linear control requires information about the average inversion level that is obtained via a simple linearised first-order observer. The scheduling variable used is the nominal pump power needed to keep the average inversion level at the desired value at steady state and the input signal powers given at particular wavelengths. In the simplified gain scheduling version, the scheduling variable is the total input signal power. Simulation examples indicate that the proposed controller completely eliminates at steady state the photon power transients caused by signal add/drops with the steady state being reached within a few milliseconds.

Inspec keywords: feedback amplifiers; scheduling; telecommunication control; power control; feedforward amplifiers; nonlinear control systems; erbium; linearisation techniques; observers; automatic gain control; optical fibre amplifiers; optical fibre networks

Other keywords: simple linearised flrst-order observer; erbium-doped fibre amplifier; electronic automatic gain control; optical communication network; signal add-drop; nonlinear integral control; EDFA; signal power transient control; nominal pump power; feedback control; feedforward control; average inversion level; Er; steady-state gain scheduling technique; photon power transient

Subjects: Control applications in optical communication; Optical fibre networks; Phase and gain control; Nonlinear control systems; Fibre lasers and amplifiers; Power and energy control

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
      • 21. Slotine, J., Li, W.: ‘Applied nonlinear control’ (Prentice-Hall, Englewood Cliffs, NJ, 1991).
    5. 5)
    6. 6)
    7. 7)
    8. 8)
    9. 9)
      • 30. Song, S., Park, S.: ‘Theoretical design and analysis of EDFA gain control system based on two-level EDFA model’, Stud. Inf. Control, 2013, 22, pp. 97105.
    10. 10)
      • 22. Khalil, H.: ‘Nonlinear systems’ (Prentice-Hall, Englewood Cliffs, NJ, 2002).
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 15. Ramaswami, R., Sivarajan, K.: ‘Optical networks: a practical perspective’ (Morgan and Kaufman, San Francisco, 1998).
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • 18. Neto, B., Reis, C., Dionisio, R., et al: ‘Assesment and mitigation of Erbium-doped fibre amplifiers (EDFS) gain transients in hybrid wavelength division multiplexing/time division multiplexing passive optical network (WDM/TDM PON) in the presence of packet-based traffic’, IET Optoelectron., Special Issue – Next Generation of Optical Access, 2010, 4, pp. 219225.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
      • 1. Desurvire, E.: ‘Erbium-doped fiber amplifiers’ (Wiley, New York, 1994).
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
      • 12. Radisavljevic, V.: ‘A new feed-forward/feedback scheme for elimination of power transients in erbium-doped optical fiber amplifiers’, Dyn. Continuous Discrete Impulsive Syst., Special Issue, 2005, 12, pp. 708712.
    39. 39)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0421
Loading

Related content

content/journals/10.1049/iet-cds.2013.0421
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading