access icon free Common-rail powered reliability improving technique for single-supply complementary metal oxide semiconductor amplifiers

This paper presents a low-power technique to improve reliability of complementary metal oxide semiconductor (CMOS) amplifiers using a shared bias network for input gate and substrate of transistors. The circuit [named reliability improving circuit (RIC)] significantly reduces discrepancy in amplifier gain (S 21, voltage gain), noise figure (NF/NFmin) and output reflection-loss (ORL) parameters resulting from variation in threshold voltage, feature-width, device speed and supply rail. It performs well on both typical- (1.2 V) and low-voltage (0.7 V) platforms of a 90 nm CMOS technology and is able to maintain its consistency within a wide frequency coverage (10–30 GHz) for three different architectures (cascode, low-voltage cascode and common-source). This allows the RIC incorporated front-end to satisfy a broad range of gain, isolation, linearity and NF requirements. The scheme's biasing arrangement is powered from amplifier rails which permit the overall circuit to be driven from a single main supply. Analysis and simulation results demonstrate the technique improving consistency of figures of merit considerably against different aspects of process/system variation without significant degradation of radio frequency performance.

Inspec keywords: CMOS analogue integrated circuits; integrated circuit reliability; low-power electronics; MMIC amplifiers

Other keywords: CMOS technology; voltage 1.2 V; device speed; voltage 0.7 V; low-power technique; size 90 nm; shared integrated bias network; radio frequency performance; scheme biasing arrangement; process-system variation; RIC-incorporated front-end; noise figure; NF requirement; supply rail; transistor input gate; frequency 10 GHz to 30 GHz; transistor substrate; common-rail powered reliability-improving technique; output reflection-loss parameters; common-source architecture; single-supply complementary metal oxide semiconductor amplifiers; amplifier gain; threshold voltage; CMOS amplifiers; low-voltage platforms; low-voltage cascode architecture; reliability improving circuit; amplifier rails

Subjects: Microwave integrated circuits; Reliability; Amplifiers; CMOS integrated circuits

References

    1. 1)
      • 24. Karthik, J., Khan, Q., Chi, B., Beattie, W., Wang, Z., Chiang, P.: ‘A self-healing 2.4 GHz LNA with on-chip S11/S21 measurement/calibration for in-situ PVT compensation’. Proc. IEEE Radio Frequency. Int. Circuits Symp., May 2010, pp. 311314.
    2. 2)
    3. 3)
    4. 4)
      • 32. Schwierz, F.: ‘RF transistors: performance trends versus IRTS targets’. Proc. Sixth Int. Caribbean Conf. Devices, Circuits and Systems, April 2006, pp. 195200.
    5. 5)
      • 12. Lin, X.-W.: ‘Design and process variability – the sources and mechanisms’, DAC Tutor. – Pract. Aspects Coping Variability Electr. View, 2006.
    6. 6)
      • 10. Nassif, S.R.: ‘Design for variability in DSM technologies’. Proc. Int. Symp. Quality Electronic Design (ISQED), 2000, pp. 451454.
    7. 7)
      • 25. Mukadam, M.Y., Filho, O.G., Xuan, Z., Apsel, A.B.: ‘Process variation compensation of a 4.6 GHz LNA in 65 nm CMOS’. Proc. IEEE Int. Symp. Circuits Systems (ISCAS), May–June 2010, pp. 24902493.
    8. 8)
    9. 9)
      • 28. Abrishami, H., Hatami, S., Amelifard, B., Pedram, M.: ‘NBTI-aware flip-flop characterization and design’. Proc. 18th ACM Great Lakes Symp. VLSI, 2008, pp. 2934.
    10. 10)
      • 33. Chang, L., Choi, Y.-K., Ha, D., et al: ‘Extremely scaled silicon nano-CMOS devices’. Proc. IEEE, November 2003, vol. 91, no. 11, pp. 18601873.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
      • 11. Orshansky, M., Nassif, S., Boning, D.: ‘Design for manufacturability and statistical design: a constructive approach’ (Springer, New York, 2008).
    15. 15)
      • 18. Fang, J., Sapatnekar, S.S.: ‘Incorporating hot-carrier injection effects into timing analysis for large circuits’, IEEE Trans. Very Large Scale Integr. Syst., 2014, 99, (1).
    16. 16)
      • 35. Taur, Y., Ning, T.: ‘Fundamentals of modern VLSI devices’ (Cambridge University Press, UK, 2002).
    17. 17)
    18. 18)
    19. 19)
    20. 20)
    21. 21)
      • 23. Yike, C., Chi, B., Liu, M., Zhang, Y., Li, Y., Wang, Z.: ‘Process variation compensation of a 2.4 GHz LNA in 0.18 μm CMOS using digitally switchable capacitance’. Proc. IEEE Int. Symp. Circuits Systems (ISCAS), May 2007, pp. 25622565.
    22. 22)
      • 17. Ma, C., Mattausch, H.J., Miyake, M., et al: ‘Compact reliability model for degradation of advanced p-MOSFETs due to NBTI and hot-carrier effects in the circuit simulation’. Proc. IEEE Reliability Physics Symp. (IRPS), April 2013, pp. 2A.3.12A.3.6.
    23. 23)
    24. 24)
      • 26. Wu, Y., Shi, C., Ismail, M., Olsson, H.: ‘Temperature compensation design for a 2.4 GHz CMOS low noise amplifier’. Proc. IEEE Int. Symp. Circuits Systems (ISCAS), May 2000, pp. 323326.
    25. 25)
      • 15. Kim, E.-H., Choi, J.-K., Yun, S.-O., Ko, J., Lee, K.: ‘A highly efficient 5.8 GHz CMOS transmitter IC with robustness over PVT variations’. Proc. IEEE Radio Frequency Integrated Circuits. Symp. (RFIC), May 2010, pp. 403406.
    26. 26)
      • 14. Zhang, G., Mora, M.S., Farrell, R.: ‘A built-in-test circuit for functional verification & PVT variations monitoring of CMOS RF circuits’. Proc. IET Irish Signals and Systems Conf., June 2006, pp. 217222.
    27. 27)
      • 30. Scholvin, J., Greenberg, D.R., Del Alamo, J.A.: ‘RF power potential of 90 nm CMOS: device options, performance, and reliability’. IEEE EDM Technical Digest, December 2004, pp. 455458.
    28. 28)
      • 4. McPherson, J.W.: ‘Scaling-induced reductions in CMOS reliability margins and the escalating need for increased design-in reliability efforts’. Proc. Int. Symp. Quality Electronic Design, 2001, pp. 123130.
    29. 29)
      • 3. White, M.: ‘Scaled CMOS reliability and considerations for spacecraft systems: bottom-up and top-down perspectives’. Proc. IEEE Int. Reliability Physics Symp. (IRPS), April 2012, pp. 4B-4.14.5.
    30. 30)
    31. 31)
      • 16. Arora, R., Moen, K.A., Madan, A., et al: ‘Impact of body tie and source/drain contact spacing on the hot carrier reliability of 45-nm RF-CMOS’. IEEE Int. Integrated Reliability Workshop Final Report (IRW), October 2010, pp. 5660.
    32. 32)
      • 2. Nigam, T.: ‘CMOS reliability: from discrete device degradation to circuit aging’. Proc. Int. Symp. VLSI Design, Automation, and Test (IVLSI-DAT), April 2013, p. 1.
    33. 33)
      • 5. Ruberto, M., Degani, O., Wail, S., Tendler, A., Fridman, A., Goltman, G.: ‘A reliability-aware RF power amplifier design for CMOS radio chip integration’. Proc. IEEE Int. Reliability Physics Symp. (IRPS), April–May 2008, pp. 536540.
    34. 34)
      • 36. Wilkerson, C., Hongliang, G., Alameldeen, A.R., Chishti, Z., Khellah, M., Lu, S.-L.: ‘Trading off cache capacity for reliability to enable low voltage operation’. Proc. 35th Int. Symp. Computer Architecture (ISCA), June 2008, pp. 203214.
    35. 35)
    36. 36)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0401
Loading

Related content

content/journals/10.1049/iet-cds.2013.0401
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading