access icon free Switching ruggedness and surge-current capability of diodes using the self-adjusting p emitter efficiency diode concept

The surge-current ruggedness of free-wheeling diodes can be improved by implementing the self-adjusting p emitter efficiency diode concept (SPEED). Simulations indicate that the switching ruggedness is reduced because of the occurrence of cathode-side filaments during reverse-recovery. Experiments confirm the weak switching performance of such a diode in comparison to a conventional diode. By implementing the controlled injection of backside holes concept cathode-side filaments can be suppressed. However, this measure is not sufficient to regain the switching ruggedness of a conventional diode. It is also necessary to fully embed the p+-areas of the SPEED anode in the low-doped p-type area to avoid high electrical field strengths at the p+p-junction and pinning of anode-side filaments. However, anode-side adjustments for improving the switching ruggedness can reduce the benefit of the SPEED concept regarding the surge-current capability.

Inspec keywords: semiconductor diodes; power semiconductor switches; semiconductor device reliability; semiconductor device models

Other keywords: reverse recovery; backside holes; anode side filament pinning; SPEED; high electrical field strength; diode switching ruggedness; diode surge current capability; controlled injection; free wheeling diodes; cathode side filaments; self-adjusting p emitter efficiency diode concept; p+p-junction

Subjects: Semiconductor devices; Power semiconductor devices; Reliability; Semiconductor device modelling, equivalent circuits, design and testing

References

    1. 1)
      • 10. Felsl, H.P., Pfaffenlehner, M., Schulze, H., et al: ‘The CIBH diode – great improvement for ruggedness and softness of high voltage diodes’. ISPSD ́08, 2008.
    2. 2)
      • 1. Matthias, S., Vobecky, J., Corvasce, C., Kopta, A., Cammarata, M.: ‘Field shield anode (FSA) concept enabling higher temperature operation of fast recovery diodes’. Proc. ISPSD ́11, 2011, pp. 8891.
    3. 3)
      • 3. Baburske, R., Lutz, J., Schulze, H.-J., Felsl, H.P., Siemieniec, R.: ‘A new diode structure with inverse injection dependency of emitter efficiency (IDEE)’. Proc. ISPSD ́10, 2010.
    4. 4)
    5. 5)
      • 8. Chen, M., Lutz, J., Domeij, M., Felsl, H.P., Schulze, H.-J.: ‘A novel diode structure with controlled injection of backside holes (CIBH)’. Proc. ISPSD ́06, 2006, pp. 912.
    6. 6)
      • 9. Biermann, J., Pfaffenlehner, M., Felsl, H.P., Gutt, T., Schulze, H.: ‘CIBH diode with superior soft switching behavior in 3.3 kV modules for fast switching applications’. Proc. PCIM Europe ́08, 2008, pp. 367371.
    7. 7)
      • 11. Pfaffenlehner, M., Felsl, H.P., Niedernostheide, F.-J., et al: ‘Optimization of diodes using the SPEED concept and CIBH’. Proc. ISPSD ́11, 2011, pp. 108111.
    8. 8)
    9. 9)
      • 5. Baburske, R., Niedernostheide, F.-J., Falck, E., Lutz, J., Schulze, H.-J., Bauer, J.: ‘Destruction behavior of power diodes beyond the SOA limit’, Proc. ISPSD ́12, 2012, pp. 365368.
    10. 10)
      • 4. Lutz, J., Schlangenotto, H., Scheuermann, U., Doncker, R.D.: ‘Semiconductor power devices – physics, characteristics, reliability’ (Springer Verlag, 2011).
    11. 11)
      • 7. Baburske, R., Lutz, J., Schulze, H.-J., et al: ‘The trade-off between surge-current capability and reverse-recovery behaviour of high-voltage power diodes’. ISPS ́10, 2010.
    12. 12)
      • 12. Gutt, T., Schulze, H.: ‘Deep melt activation using laser thermal annealing for IGBT thin wafer technology’. Proc. ISPSD ́10, 2010, pp. 2932.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0216
Loading

Related content

content/journals/10.1049/iet-cds.2013.0216
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading