access icon free Analytical model for CMOS cross-coupled LC-tank oscillator

Periodic steady-state behaviour of cross-coupled LC-tank oscillator is of critical importance in ultra-low power, low-voltage transceiver circuits. Understanding the major factors affecting amplitude, oscillation frequency and power consumption would lead to more optimised oscillator design particularly for short-range wireless transceivers. This study presents a new approach for evaluating the amplitude of the main component, oscillation frequency and power consumption of cross-coupled LC-tank oscillator. Three major factors, affecting oscillator functionality are examined. In order to obtain a general design methodology, the effects of oscillator parameters such as transistors’ sizes, inductor and capacitor values are investigated. An intuitive discussion about oscillator behaviour and a design procedure are presented. The theoretical results are verified by circuit simulations in the 0.18 µm CMOS process.

Inspec keywords: oscillators; circuit simulation; capacitors; MOSFET; LC circuits; coupled circuits; low-power electronics; inductors; CMOS analogue integrated circuits; radio transceivers; integrated circuit design

Other keywords: size 0.18 mum; capacitor; short-range wireless transceiver; circuit simulation; transistor; inductor; amplitude evaluation; ultralow power low-voltage transceiver circuit; power consumption; periodic steady-state behaviour; oscillation frequency; CMOS cross-coupled LC-tank oscillator

Subjects: Insulated gate field effect transistors; Capacitors; Oscillators; Semiconductor integrated circuit design, layout, modelling and testing; CMOS integrated circuits; Inductors and transformers

References

    1. 1)
      • 11. Buonomo, A., Lo Schiavo, A.: ‘The effect of parameter mismatches on the output waveform of an LC-VCO’, Int. J. Circuit Theory Appl., 2010, 38, (5), pp. 487501.
    2. 2)
      • 4. Mansour, M.M., et al: ‘Analysis techniques for obtaining the steady-state solution of MOS LC oscillators’. IEEE ISCAS, May 2004, pp. 11731181.
    3. 3)
      • 1. Sheng, W., Xia, B., Emira, A.E., et al: ‘A 3-V, 0.35-µm CMOS Bluetooth receiver IC’, IEEE J. Solid-State Circuits, 2003, 38, (1), pp. 3042 (doi: 10.1109/JSSC.2002.806277).
    4. 4)
      • 10. Buonomo, A., Lo Schiavo, A.: ‘Finding the tuning curve of a CMOS – LC VCO’, IEEE Trans. Circuits Syst. II, Express Briefs, 2008, 55, (9), pp. 887891 (doi: 10.1109/TCSII.2008.923422).
    5. 5)
      • 2. Di Pascoli, S.: ‘Fundamental limits to power consumption of LC subthreshold oscillator’, Electron. Lett., 2008, 44, (1), pp. 1314 (doi: 10.1049/el:20082300).
    6. 6)
      • 3. Kamarudin, M.R., Nechayev, Y.I., Hall, P.S.: ‘Antennas for on-body communication systems’. Proc. IEEE Int. Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, 7–9 March 2005, pp. 1720.
    7. 7)
      • 9. Yates, D.C., Holmes, A.S.: ‘Preferred transmission frequency for size-constrained ultralow-power short-range CMOS oscillator transmitters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2009, 56, (6).
    8. 8)
      • 6. Buonomo, A., Lo Schiavo, A.: ‘Large-signal analysis of CMOS – LC VCOs’. IEEE ECCTD, May 2007, pp. 994997.
    9. 9)
      • 8. Ham, D., Hajimiri, A.: ‘Concepts and methods in optimization of integrated LC VCOs’, IEEE J. Solid-State Circuits, 2001, 36, pp. 896909 (doi: 10.1109/4.924852).
    10. 10)
      • 5. Huang, Q.: ‘Phase noise to carrier ratio in LC oscillators’, IEEE Trans. Circuits Syst. I, 2000, 47, pp. 965980 (doi: 10.1109/81.855452).
    11. 11)
      • 7. Fahs, B., Gamand, P., Berland, C.: ‘A continuous analysis of the oscillation amplitude in MOS LC-VCOs’. IEEE ICM, December 2010, pp. 196199.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2013.0087
Loading

Related content

content/journals/10.1049/iet-cds.2013.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading