access icon free Coplanar wire crossing in quantum cellular automata using a ternary cell

To date, ternary quantum-dot cellular automata (QCA) has been especially investigated and also is being advanced. Nonetheless, it should be possible to make interactions between binary QCA and ternary QCA circuits in order to have a versatile platform of designing. On the other hand, one of the most important concerns in QCA is minimising wire crossings because of low robustness caused by their manufacturing process and operational defects. In this study, a novel ternary-to-binary (and vice versa) converter is introduced firstly and a novel coplanar wire crossing scheme is proposed and presented afterwards. The latter scheme uses both kinds of binary and ternary QCA cells and provides a reliable crossover. Detailed circuit designs and results are presented to show correct functionality of the proposed circuits.

Inspec keywords: CMOS integrated circuits; cellular automata; manufacturing processes; integrated circuit reliability; quantum dots

Other keywords: ternary-to-binary converter; wire crossings; ternary cell; operational defects; ternary quantum-dot cellular automata; ternary QCA circuits; coplanar wire crossing; quantum cellular automata; manufacturing process

Subjects: Automata theory; CMOS integrated circuits; Reliability

References

    1. 1)
      • 9. Mukaidono, M.: ‘Regular ternary logic functions— ternary logic functions suitable for treating ambiguity’, IEEE Trans. Comput., 1986, C-35, (2), pp. 179183 (doi: 10.1109/TC.1986.1676738).
    2. 2)
      • 10. Dhande, A.P., Ingole, V.T.: ‘Design of 3-valued R–S & D flip-flops based on simple ternary gates’. The Second World Enformatika Conf. WEC'05, Istanbul, 2005, pp. 6265.
    3. 3)
      • 33. Arjmand, M.M., Soryani, M., Tehrani, M.A., Navi, K.: ‘A novel ternary-to-binary converter in quantum-dot cellular automata’. Proc. Int. Symp. on VLSI (ISVLSI), Amherst, USA, August 2012, pp. 147152.
    4. 4)
      • 24. Ottavi, M., Pontarelli, S., DeBenedictis, E.P., Salsano, A., Frost-Murphy, S., Kogge, P.M. : ‘Partially reversible pipelined QCA circuits: combining low power with high throughput’, IEEE Trans.Nanotechnol., 2011, 10, (6), pp. 13831393 (doi: 10.1109/TNANO.2011.2147796).
    5. 5)
      • 18. Beiki, Z., Soryani, M., Mirzakuchaki, S.: ‘Cell number optimization for quantum cellular automata based on genetic algorithm’. Third Int. Conf. on Electronics Computer Technology (ICECT), Kanyakumari, India, 8–10 April 2011.
    6. 6)
      • 23. Pecar, P.: ‘Introducing interconnection crossing in ternary quantum-dot cellular automata’. ICQNM 2011, The Fifth Int. Conf. on Quantum, Nano and Micro Technologies, France, August 2011.
    7. 7)
      • 17. Niemier, M.T., Kontz, M.J., Kogge, P.M.: ‘A design of and design tools for a novel quantum dot based microprocessor’. Proc. Design Automat. Conf., 2000, pp. 227232.
    8. 8)
      • 3. Molahosseini, A.S., Navi, K.: ‘A reverse converter for the enhanced moduli set {2n–1, 2n + 1, 22n, 22n + 1–1} using CRT and MRC’. IEEE Computer Society Annual Symp. on ISVLSI'10, 5–7 July 2010, pp. 456457.
    9. 9)
      • 2. Timarchi, S., Navi, K., Kavehei, O.: ‘Maximally redundant high-radix signed-digit adder: new algorithm and implementation’. IEEE Computer Society Annual Symp. on ISVLSI'09, 13–15 May 2009, pp. 97102.
    10. 10)
      • 27. Cole, T., Lusth, J.: ‘Quantum-dot cellular automata’, Prog. Quantum Electron., 2001, 25, pp. 165 (doi: 10.1016/S0079-6727(01)00007-6).
    11. 11)
      • 21. Bajec, I.L., Zimic, N., Mraz, M.: ‘The ternary quantum-dot cell and ternary logic’, IOP Nanotechnol., 2006, 17, (8), pp. 193742 (doi: 10.1088/0957-4484/17/8/023).
    12. 12)
      • 31. Bhanja, S., Ottavi, M., Lombardi, F., Pontarelli, S.: ‘QCA circuits for robust coplanar crossing’, J. Electron. Testing: Theory Appl., 2007, 23, (2–3), pp. 193210 (doi: 10.1007/s10836-006-0551-y).
    13. 13)
      • 7. Mardiris, V.A., Karafyllidis, I.G.: ‘Design and simulation of modular 2n to 1 quantum-dot cellular automata (QCA) multiplexers’, Int. J. Circuit Theory Appl., 2010, 38, (8), pp. 771785.
    14. 14)
      • 26. Thapliyal, H., Ranganathan, N.: ‘Reversible logic-based concurrently testable latches for molecular QCA’, IEEE Trans. Nanotechnol., 2010, 9, (1), pp. 6269 (doi: 10.1109/TNANO.2009.2025038).
    15. 15)
      • 32. Anduwan, G.A., Padgett, B.D., Kuntzman, M., et al: ‘Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices’, J. Appl. Phys., 2010, 107, pp. 114306 (doi: 10.1063/1.3428453).
    16. 16)
      • 28. Chaudhary, A., Chen, D.Z., Whitton, K., Niemier, M., Ravichandran, R.: ‘Eliminating wire crossings for molecular quantum-dot cellular automata implementation’. Proc. of the 2005 IEEE/ACM Int. Conf. on Computer-aided Design, San Jose, CA, 06–10November 2005, pp. 565571.
    17. 17)
      • 29. Chung, W.J., Smith, B., Lim, S.K.: ‘QCA physical design with crossing minimisation’. Proc. Int. Conf. Nanotechnol., 2005, pp. 108111.
    18. 18)
      • 19. Beiki, Z., Mirzakuchaki, S., Soryani, M., Mozayani, M.: ‘Cell number optimization for quantum cellular automata based on AND-OR-INVERTER’, (ASP) J. Comput. Theor. Nanosci., 2012, 9, pp. 627630 (doi: 10.1166/jctn.2012.2063).
    19. 19)
      • 1. Kavehei, O., Azghadi, M.R., Navi, K., Mirbaha, A.: ‘Design of robust and high-performance 1-bit CMOS full adder for nanometer design’. Proc. of the 2008 IEEE Computer Society Annual Symp. on VLSI, 07–09 April 2008, pp. 1015.
    20. 20)
      • 12. Temel, T., Morgul, A.: ‘Implementation of multi-valued logic gates using full current-mode CMOS circuits’, Analog Integr. Circuits Signal Process., 2004, 39, (2), pp. 191204 (doi: 10.1023/B:ALOG.0000024066.66847.89).
    21. 21)
      • 4. Kim, Y.: ‘Challenges for nanoscale MOSFETs and emerging nanoelectronics’, Trans. Electr. Electron. Mater., 2010, 11, (3), pp. 93105 (doi: 10.4313/TEEM.2010.11.3.093).
    22. 22)
      • 22. Pecar, P., Janez, M., Zimic, N., Mraz, M., Bajec, I.L.: ‘The ternary quantum-dot cellular automata memorizing cell’. IEEE Computer Society Annual Symp. on VLSI, 2009, ISVLSI'09, 13–15, May 2009, pp. 223228.
    23. 23)
      • 6. Vankamamidi, V., Ottavi, M., Lombardi, F.: ‘A serial memory by quantum-dot cellular automata (QCA)’, IEEE Trans. Comput. Comput., 2008, 57, (5), pp. 606618 (doi: 10.1109/TC.2007.70831).
    24. 24)
      • 13. Navi, K., Foroutan, V.V., Mazloomnejad, B., Bahrololoumi, Sh., Hashemipour, O., Haghparast, M.: ‘A six transistors full adder’, World Appl. Sci. J., 2008, 4, pp. 142149.
    25. 25)
      • 25. Thapliyal, H., Ranganathan, N., Kotiyal, S.: ‘Design of testable reversible sequential circuits’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, PP, (99), pp. 19 (doi: 10.1109/TVLSI.2012.2209688).
    26. 26)
      • 15. Kim, K., Wu, K., Karri, R.: ‘Quantum-dot cellular automata design guideline’, IEICE Trans. Fundam., 2006, E89-A, (6), pp. 16071614 (doi: 10.1093/ietfec/e89-a.6.1607).
    27. 27)
      • 11. Bundalo, Z., Bundalo, D., Softic, F., Kostadinovic, M.: ‘Interconnection of binary and ternary CMOS digital circuits and systems’. MIPRO, 2010 Proc. of the 33rd Int. Convention, 24–28 May 2010, pp. 7883.
    28. 28)
      • 30. Smith, B.S., Lim, S.K.: ‘QCA channel routing with wire crossing minimisation’. Proc. of the 15th ACM Great Lakes Symp. on VLSI, Chicago, Illinois, USA, 17–19 April 2005.
    29. 29)
      • 8. Pecar, P., Ramsak, A., Zimic, N., Mraz, M., Lebar Bajec, I.: ‘Adiabatic pipelining: a key to ternary computing with quantum dots’, IOP Nanotechnol., 2008, 19, (49), pp. 495401 (doi: 10.1088/0957-4484/19/49/495401).
    30. 30)
      • 16. Schulhof, G., Walus, K., Jullien, G.A.: ‘Simulation of random cell displacements in QCA’, ACM J. Emerging Technol. Comput. Syst. (JETC), 2007, 3, (1), pp. 2-es.
    31. 31)
      • 5. Lent, C.S., Tougaw, P., Porod, W., Bernstein, G.H.: ‘Quantum cellular automata’, IOP Nanotechnol., 1993, 4, (1), pp. 4957 (doi: 10.1088/0957-4484/4/1/004).
    32. 32)
      • 14. Lent, C.S., Tougaw, P.D.: ‘Lines of interacting quantum-dot cells: a binary wire’, J. Appl. Phys., 1993, 74, pp. 62276233 (doi: 10.1063/1.355196).
    33. 33)
      • 20. Tehrani, M.A., Safaei, F., Moaiyeri, M.H., Navi, K.: ‘Design and implementation of multistage interconnection networks using quantum-dot cellular automata’, Microelectron. J., 2011, 42, (6), pp. 913922 (doi: 10.1016/j.mejo.2011.03.004).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0366
Loading

Related content

content/journals/10.1049/iet-cds.2012.0366
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading