access icon free Parasitic elements modelling in thermoelectric modules

This study introduces an experimental method for determining the parasitic reactive components that appear in a thermoelectric module (TEM). In most cases, a TEM is referred to by taking into account only the constant values of the internal electrical resistance, Seebeck coefficient and thermal conductivity. The current research is focused on determining the parasitic reactive elements, inductance and capacitance that appear in a TEM. These values are linked to the semiconductor geometry and manufacturing process. The experimental results will be used afterwards to build an accurate thermoelectric device model suitable for designing and simulating TEM-based applications.

Inspec keywords: Seebeck effect; thermoelectric devices; thermal conductivity

Other keywords: parasitic elements modelling; thermal conductivity; thermoelectric modules; internal electrical resistance; parasitic reactive components; TEM; Seebeck coefficient; manufacturing process; semiconductor geometry; thermoelectric device model

Subjects: Other direct energy conversion

References

    1. 1)
      • 19. ‘Everredtronics LTD. Technical Info’, available at http://www.everredtronics.com, accessed August 2012.
    2. 2)
      • 22. ‘BK precision instruction manual, Model 889B Bench LCR/ESR meter with component tester’, available at http://www.bkprecision.com, accessed October 2012.
    3. 3)
      • 2. Yamashita, O., ‘Resultant Seebeck coefficient formulated by combining the Thomson effect with the intrinsic Seebeck coefficient of a thermoelectric element’, Energy Convers. Manage., 2009, 50, (9), pp. 23942399 (doi: 10.1016/j.enconman.2009.05.023).
    4. 4)
      • 7. Crane, D.T.: ‘Thermoelectric waste heat recovery program for passanger vehiclesUS Department Energy Efficiency & Renewable Energy (EERE), May 2012, available at www1.eere.energy.gov, accessed November 2012, pp. 114–121.
    5. 5)
      • 34. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’, (Springer, 2001, 2nd edn.), pp. 480482.
    6. 6)
      • 8. Mazar, B.: ‘State of the art prototype vehicle with a thermoelectric generatorTE Application Workshop, Baltimore, March 2012, available at www1.eere.energy.gov, accessed November 2012.
    7. 7)
      • 9. Eder, A., Linde, M.: ‘Efficient and dynamic – the BMW group roadmap for the application of thermoelectric generators’. Second Thermoelectric Applications Workshop, San Diego, January 2011, available at www1.eere.energy.gov, accessed November 2012.
    8. 8)
      • 33. ‘LTC3105 step-up DC–DC converter datasheet’, available at http://www.linear.com, accessed November 2012.
    9. 9)
      • 18. Rowe, D.M.: ‘Thermoelectrics handbook: macro to nano’ (CRC Press, 2005).
    10. 10)
      • 15. Chen, M., Rosendahl, L.A., Condra, T.: ‘Transient behavior study of thermoelectric generators through an electro-thermal model using SPICE’. 25th Int. Conf. Thermoelectronics (ICT), 2006, pp. 214219.
    11. 11)
      • 32. Cernaianu, M., Gontean, A., ‘High accuracy TEM model for energy harvesting systems’, accepted for publishing by IET-CDS journal.
    12. 12)
      • 4. McCoy, J., ‘Thermoelectric technology: materials, processes, devices and systems’, ASM San Diego Chapter, January 2012, available at www.hi-z.com accessed November 2012.
    13. 13)
      • 26. Zorbas, K.T., Hatzikraniotis, E., Paraskevopoulos, K.M.: ‘Power and efficiency calculation in commercial TEG and application in wasted heat recovery in automobile’. Fifth European Conf. Thermoelectrics, Odessa, Ukraine, 2007, vol. i, no. 3, pp. 292298.
    14. 14)
      • 10. Lineykin, S., Ben-Yaakov, S.: ‘Modeling and analysis of thermoelectric modules’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 505512 (doi: 10.1109/TIA.2006.889813).
    15. 15)
      • 27. Ziolkowski, P., Poinas, P., Karpinski, G., Müller, E.: ‘Estimation of thermoelectric generator performance by finite element modeling’, J. Electron. Mater., 2010, 39, (9), pp. 19341943 (doi: 10.1007/s11664-009-1048-0).
    16. 16)
      • 30. Cernaianu, M., Gontean, A., ‘Thermoelectrical modules thermal conductance measurement system’. Tenth Int. Symp. Electronics and Telecommunications, ISETC 2012, Timisoara, Romania, 2012, pp. 4144.
    17. 17)
      • 23. 303 Circuits – 300 Series, Editor-Leonard Seymour (Elektor Electronics, England, 1988).
    18. 18)
      • 3. Huang, M.J., Yen, R.H., Wang, A.B.: ‘The influence of the Thomson effect on the performance of a thermoelectric cooler’, Int. J. Heat Mass Transf., 2005, 48, (2), pp. 413418 (doi: 10.1016/j.ijheatmasstransfer.2004.05.040).
    19. 19)
      • 5. Rowe, D.M.: ‘Review: thermoelectric waste heat recovery as a renewable energy source’, Int. J. Innov. Energy Syst. Power, 2006, 1, (1), available at http://ijesp.com, accessed November 2012, pp. 13–23.
    20. 20)
      • 6. Schock, H., Case, E., Caillet, T., et al: ‘Thermoelectric conversion of waste heat to electricity in an IC engine powered vehicleUS Department Energy Efficiency & Renewable Energy (EERE), January 2011, available at www1.eere.energy.gov, accessed November 2012.
    21. 21)
      • 24. ‘Electro-voice Q44 stereo power amplifier – product specifications’, http://www.electrovoice.com, accessed October 2012.
    22. 22)
      • 1. Chen, W.H., Liao, C.Y., Hung, C.-I.: ‘A numerical study on the performance of miniature thermoelectric cooler affected by Thomson effect’, Appl. Energy, 2012, 89, (1), pp. 464473 (doi: 10.1016/j.apenergy.2011.08.022).
    23. 23)
      • 13. Alaoui, C., ‘Peltier thermoelectric modules modeling and evaluation’, Int. J. Eng., 2011, 5, (1).
    24. 24)
      • 14. Mirocha, A., Dziurdzia, P.: ‘Improved electrothermal model of the thermoelectric generator implemented in SPICE’. Int. Conf. Signals and Electronic Systems (ICSES), Krakow, Poland, September 2008.
    25. 25)
      • 20. Melcor: ‘Application notes for thermoelectric devices’, former www.melcor.com, acquired by Laird Technologies, available at www.lairdtech.com, last visited October 2012.
    26. 26)
      • 25. ‘Tektronik DPO4104B user manual’, http://www.tek.com, accessed November 2012.
    27. 27)
      • 29. Linear Technology Spice Simulator, available at http://www.linear.com, accessed November 2012.
    28. 28)
      • 12. Yang, M.W., Xu, W.H., Tang, W.Y.: ‘Thermal analysis of laser diode module by an equivalent electrical network method’, Optoelectron. Lett., 2006, 2, (4), pp. 273277 (doi: 10.1007/BF03033658).
    29. 29)
      • 21. Cernaianu, M., Cernaianu, A., Cirstea, C., Gontean, A., ‘Thermo electrical generator improved model’. Int. Conf. Power and Energy Systems – ICPES, Hong Kong, April 2012, pp. 343348.
    30. 30)
      • 31. Gorbachuk, N.P., Bolgar, A.S., Sidorko, V.R., Goncharuk, L.V.: ‘Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58-1012 K’, Powder Metall. Metal Ceram., 2004, 43, (5–6), pp. 284290 (doi: 10.1023/B:PMMC.0000042464.28118.a3).
    31. 31)
      • 28. ‘Actis insulators – technical datasheet’, available at http://www.insulation-actis.com, accessed November 2012.
    32. 32)
      • 11. Lineykin, S., Ben-Yaakov, S.: ‘SPICE compatible equivalent circuit of the energy conversion processes in thermoelectric modules’. 23rd IEEE Israel Convention of Electrical and Electronics Engineers in Israel, Tel-Aviv University, September 2004, pp. 346349.
    33. 33)
      • 16. Chen, M., Rosendahl, L.A., Condra, T.J., Pedersen, J.K.: ‘Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 112124 (doi: 10.1109/TEC.2008.2005310).
    34. 34)
      • 17. Meng, F., Chen, L., Sun, F.: ‘A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities’, Energy, 2011, 36, (5), pp. 35133522 (doi: 10.1016/j.energy.2011.03.057).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0351
Loading

Related content

content/journals/10.1049/iet-cds.2012.0351
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading