Efficient ultra-high-voltage controller-based complementary-metal-oxide-semiconductor  switched-capacitor DC–DC converter for radio-frequency micro-electro-mechanical systems switch actuation

Efficient ultra-high-voltage controller-based complementary-metal-oxide-semiconductor  switched-capacitor DC–DC converter for radio-frequency micro-electro-mechanical systems switch actuation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Achieving wireless connectivity in ever smaller, lower power portable devices with increasing number of features and better radio-frequency (RF) performance is becoming difficult to fulfill through existing RF front-end technology. RF micro-electro-mechanical systems (MEMS) switch technology, which has significantly better RF characteristics than conventional technology and has near-zero power consumption, is one of the emerging solutions for next generation RF front-ends. However, to achieve satisfactory RF MEMS device performance, it is often necessary to have an actuating circuitry to generate high direct current (DC) voltages for device actuation with low power consumption. In this study, the authors present an RF MEMS switch controller based on a switched-capacitor (SC) DC–DC converter in a 0.35 μm CMOS technology. In this design, novel design techniques for a higher output voltage and lower power consumption in a smaller die area are proposed. The authors demonstrate the design of the high-voltage (HV) SC DC–DC converter by using low-voltage  transistors and address reliability issues in the design. Through the proposed design techniques, the SC DC–DC converter achieves more than 25% higher boosted voltage compared to converters that use HV transistors. The proposed design provides 40% power reduction through the charge recycling circuit. Moreover, the SC DC–DC converter achieves 45% smaller than the area of the conventional converter.


    1. 1)
      • 1. Rebeiz, G.M.: ‘RF MEMS switches: status of the technology’. 12th Int. Conf. Solid-State Sensors, Actuators and Microsystems, 2003, vol. 2, pp. 17261729.
    2. 2)
      • 2. Dickson, J.F.: ‘On-chip high-voltage generation in MNOS integrated circuits using an improved voltage multiplier technique’, IEEE J. Solid-State Circuits, 1976, 11, pp. 374378 (doi: 10.1109/JSSC.1976.1050739).
    3. 3)
      • 3. Wu, J.-T., Chang, K.-L.: ‘MOS charge pumps for low-voltage operation’, IEEE J. Solid-State Circuits, 1998, 33, pp. 592597 (doi: 10.1109/4.735702).
    4. 4)
      • 4. Starzyk, J.A., Ying-Wei, J., Fengjing, Q.: ‘A DC-DC charge pump design based on voltage doublers’, IEEE Trans. Circuits  Syst. I: Fundam. Theory  Appl., 2001, 48, pp. 350359 (doi: 10.1109/81.915390).
    5. 5)
      • 5. Pelliconi, R., Iezzi, D., Baroni, A., Pasotti, M., Rolandi, P.L.: ‘Power efficient charge pump in deep submicron standard CMOS technology’, IEEE J. Solid-State Circuits, 2003, 38, pp. 10681071 (doi: 10.1109/JSSC.2003.811991).
    6. 6)
      • 6. Richard, J.F., Savaria, Y.: ‘High voltage charge pump using standard CMOS technology’. Second Annual IEEE Northeast Workshop on Circuits and Systems (NEWCAS), 2004, pp. 317320.
    7. 7)
      • 7. Makowski, M.S.: ‘On performance limits of switched-capacitor multi-phase charge pump circuits.’. Int. Conf. Signals and Electronic Systems (ICSES), 2008, pp. 309312(Remarks on papers of Starzyk et al.).
    8. 8)
      • 8. Wong, Y.C., Zhou, W., El-Rayis, A.O., Haridas, N., Erdogan, A.T., Arslan, T.: ‘Practical design strategy for two-phase step up DC-DC fibonacci switched-capacitor converter’. 20th European Conf. Circuit Theory and Design (ECCTD), 2011, pp. 817820.
    9. 9)
      • 9. Tanzawa, T.: ‘On two-phase switched-capacitor multipliers with minimum circuit area’, IEEE Trans. Circuits  Syst. I, 2010, 57, pp. 26022608 (doi: 10.1109/TCSI.2010.2046958).
    10. 10)
      • 10. Ker, M.-D., Chen, S.-L., Tsai, C.-S.: ‘Design of charge pump circuit with consideration of gate-oxide reliability in low-voltage CMOS processes’, IEEE J. Solid-State Circuits, 2006, 41, pp. 11001107 (doi: 10.1109/JSSC.2006.872704).
    11. 11)
      • 11. Cha, J., Ahn, M., Cho, C., Lee, C.-H., Haksun, K., Laskar, J.: ‘Analysis and design techniques of CMOS charge-pump-based radio-frequency antenna-switch controllers’, IEEE Trans. Circuits  Syst. I: Regul. Pap., 2009, 56, pp. 10531062 (doi: 10.1109/TCSI.2009.2016129).
    12. 12)
      • 12. Mohammad, M.G., Ahmad, M.J., Al-Bakheet, M.B.: ‘Switched positive/negative charge pump design using standard CMOS transistors’, IET Circuits, Dev. Syst., 2010, 4, pp. 5766 (doi: 10.1049/iet-cds.2008.0349).
    13. 13)
      • 13. Arslan, T., Walton, A.J., Haridas, N.: ‘Micro electromechanical capacitive switch’. US Patent US 2009/0067115 A1, 12 March2009.
    14. 14)
      • 14. Wong, Y.C., Arslan, T., Erdogan, A.T.: ‘Reconfigurable wideband RF impedance transformer integrated with an antenna for multi-band wireless devices’. Loughborough Antennas & Propagation Conf. (LAPC), 2012, pp. 15.
    15. 15)
      • 15. (2012). Austriamircrosystems Foundry Support. Available:
    16. 16)
      • 16. Seeman, M.D.: ‘A design methodology for switched-capacitor DC–DC converters’. EECS Department, University of California, Berkeley, Technical report, 2009.
    17. 17)
      • 17. Van Breussegem, T.M., Wens, M., Geukens, E., Geys, D., Steyaert, M.S.J.: ‘Area-driven optimisation of switched-capacitor DC/DC converters’, Electron. Lett., 2008, 44, pp. 14881490 (doi: 10.1049/el:20081687).
    18. 18)
      • 18. Palumbo, G., Pappalardo, D., Gaibotti, M.: ‘Charge-pump circuits: power-consumption optimization’, IEEE Trans. Circuits Syst. I: Fundam. Theory  Appl., 2002, 49, pp. 15351542 (doi: 10.1109/TCSI.2002.804544).
    19. 19)
      • 19. Mensi, R.L., Colalongo, L., Rolandi, P.L., Kovacs-Vajna, Z.M.: ‘A 1.2-to-8 V charge-pump with improved power efficiency for non-volatile memories’. IEEE Int. Solid-State Circuits Conf. (ISSCC), 2007, pp. 522619.
    20. 20)
      • 20. David, M., Johns, A.: ‘Analog integrated circuit design’ (John Wiley & Sons, Inc., 1997).
    21. 21)
      • 21. Hong, D.S., El-Gamal, M.N.: ‘Low operating voltage and short settling time CMOS charge pump for MEMS applications’. Proc. Int. Symp. Circuits and Systems (ISCAS), 2003, vol. 5, pp. V-281V-284.
    22. 22)
      • 22. Allasasmeh, Y., Gregori, S.: ‘Charge reusing in switched-capacitor voltage multipliers with reduced dynamic losses’. 53rd IEEE Int. Midwest Symp. Circuits and Systems (MWSCAS), 2010, pp. 11691172.
    23. 23)
      • 23. Aaltonen, L., Saukoski, M., Halonen, K.: ‘On-chip digitally tunable high voltage generator for electrostatic control of micromechanical devices’. IEEE Custom Integrated Circuits Conf. (CICC), 2006, pp. 583586.

Related content

This is a required field
Please enter a valid email address