access icon free Methodology of elementary negative group delay active topologies identification

This work introduces a fundamental methodology enabling to identify the elementary negative group delay (NGD) topologies using transistors. These circuits are particularly beneficial compared to the other existing NGD topologies, with its flexibility to operate in ultra wideband (UWB), to compensate losses and potentially integrable. The basic families of NGD topologies obtained from the association of passive and active four-port networks are presented. The NGD existence condition is given. Based on this condition, the simplest NGD active cells are identified. After the analysis of passive networks formed by R, L and C components, first-order transfer functions of innovative elementary NGD cells are established. Then, similar to the classical circuits as the filters and amplifiers, synthesis relations for the design of integrable NGD topology with no self-element are introduced. To illustrate the relevance of the theoretic concept, a proof of concept was proposed. Finally, discussions on the applications of NGD circuits are offered in the conclusion.

Inspec keywords: transfer functions; active networks; delay circuits; passive networks; ultra wideband technology

Other keywords: first-order transfer functions; active four-port networks; NGD active cells; innovative elementary NGD cells; filters; UWB operation; NGD topologies; transistors; NGD circuits; passive four-port networks; losses compensation; elementary negative group delay active topology identification; ultrawideband operation; amplifiers

Subjects: Active filters and other active networks; Pulse circuits; Passive filters and other passive networks

References

    1. 1)
      • 6. Chiao, R.Y., Bolda, E.L., Bowie, J., Boyce, J., Mitchell, M.W.: ‘Superluminality and amplifiers’, Progr. Crystal Growth Charact. Mat., 1996, 33, pp. 319325 (doi: 10.1016/0960-8974(96)83663-1).
    2. 2)
      • 11. Kitano, M., Nakanishi, T., Sugiyama, K.: ‘Negative group delay and superluminal propagation: an electronic circuit approach’, IEEE J. Sel. Top. Quant. Electron., 2003, 9, (1), pp. 4351 (doi: 10.1109/JSTQE.2002.807979).
    3. 3)
      • 34. Ravelo B.: Étude des circuits analogiques-numériques NGD et leurs applications: Théorie fondamentale et expérimentations des circuits analogiques et numériques à temps négatif et leurs applications, (in French) Éditions Universitaires Européennes (EUE), Chapter 10, No. 10802, Ed. par GmbH & Co. KG, Sarrebruck, Germany, 432 Pages, January 2012.
    4. 4)
      • 32. Eudes, T., Ravelo, B.: ‘Cancellation of delays in the high-rate interconnects with UWB NGD active cells’, Appl. Phys. Res., 2011, 3, (2), pp. 8188.
    5. 5)
      • 25. Ravelo, B.: ‘Investigation on Microwave NGD Circuit’, Electromagnetics, 2011, 31, (8), pp. 537549 (doi: 10.1080/02726343.2011.621106).
    6. 6)
      • 31. Ravelo, B.: ‘Neutralization of LC- and RC-disturbances with left-handed and NGD effects’. Proc. Third Int. Conf. Metamaterials, Photonic Crystals and Plasmonics (META'12), Paris, France, 19–22 April 2012.
    7. 7)
      • 22. Steinberg, A.M., Chiao, R.Y.: ‘Dispersionless, highly superluminal propagation in a medium with a gain doublet’, Phys. Rev. A, 1994, 49, pp. 20712075 (doi: 10.1103/PhysRevA.49.2071).
    8. 8)
      • 4. Siddiqui, O.F., Erickson, S.J., Eleftheriades, G.V., Mojahedi, M.: ‘Time-domain measurement of negative-index transmission-line metamaterials’, IEEE Trans. MTT, 2004, 52, (5), pp. 14491453 (doi: 10.1109/TMTT.2004.827018).
    9. 9)
      • 3. Eleftheriades, G.V., Siddiqui, O., Iyer, A.K.: ‘Transmission line for negative refractive index media and associated implementations without excess resonators’, IEEE MWC Lett., 2003, 13, (2), pp. 5153.
    10. 10)
      • 1. Lucyszyn, S., Robertson, I.D., Aghvami, A.H.: ‘Negative group delay synthesiser’, Electron. Lett., 1993, 29, pp. 798800 (doi: 10.1049/el:19930533).
    11. 11)
      • 28. Ahn, K.-P., Ishikawa, R., Honjo, K.: ‘Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits’, IEEE Trans. MTT, 2009, 57, (9), pp. 21392147 (doi: 10.1109/TMTT.2009.2027082).
    12. 12)
      • 14. Ravelo, B.: ‘Demonstration of negative signal delay with short-duration transient pulse’, Eur. Phys. J. Appl. Phys. (EPJAP), 2011, 55, pp. 18.
    13. 13)
      • 30. Ravelo, B., Ben Hadj Slama, J.: ‘Equalization of digital/mixed-signal disturbances with a negative group delay circuit’. Proc. 16th IEEE Mediterranean Electrotechnical Conf. (MELECON 2012), Medine Yasmine Hammamet, Tunisia, 25–28 March 2012, pp. 844847.
    14. 14)
      • 33. Keser, S., Mojahedi, M.: ‘Broadband negative group delay microstrip phase shifter design’. Proc. IEEE Ant. Prop. Soc. Int. Symp. 2009 (APSURSI'09), Charleston, SC, 1–5 June 2009, pp. 14.
    15. 15)
      • 2. Broomfield, C.D., Everard, J.K.A.: ‘Broadband negative group delay networks for compensation of oscillators, filters and communication systems’, Electron. Lett., 2000, 23, pp. 19311933 (doi: 10.1049/el:20001377).
    16. 16)
      • 35. Ravelo B.: ‘Theory and design of analogue and numerical elementary NGD circuits: theoretical characterization of analogue and numerical elementary NGD circuits, LAP Lambert’ (Academic Publishing, Germany, 2012), Chapter 8, Ed. by Etomsa GmbH & Co. KG, Sarrebruck, pp. 344.
    17. 17)
      • 13. Lucyszyn, S., Robertson, I.D.: ‘Analog reflection topology building blocks for adaptive microwave signal processing applications’, IEEE Trans. MTT, 1995, MTT-43, (3), pp. 601611 (doi: 10.1109/22.372106).
    18. 18)
      • 9. Solli, D., Chiao, R.Y., Hickmannn, J.M.: ‘Superluminal effects and negative group delays in electronics, and their applications’, Phys. Rev. E, 2002, 66, (056601), pp. 14.
    19. 19)
      • 26. Ravelo, B., De Blasi, S.: ‘An FET-based microwave active circuit with dual-band negative group delay’, J. Microw. Optoelectron. Electromagn. Appl. (JMOe), 2011, 10, (2), pp. 355366 (doi: 10.1590/S2179-10742011000200006).
    20. 20)
      • 15. Ravelo, B.: ‘Baseband NGD circuit with RF amplifier’, Electron. Lett., 2011, 47, (13), pp. 752754 (doi: 10.1049/el.2011.1227).
    21. 21)
      • 12. Munday, J.N., Henderson, R.H.: ‘Superluminal time advance of a complex audio signal’, Appl. Phys. Lett., 2004, 85, pp. 503504 (doi: 10.1063/1.1773926).
    22. 22)
      • 16. Wang, L.J., Kuzmich, A., Dogariu, A.: ‘Gain-assisted superluminal light propagation’, Nature, 2000, 406, pp. 277279 (doi: 10.1038/35018520).
    23. 23)
      • 36. Choi, H., Jeong, Y., Kim, C.D., Kenney, J.S.: ‘Efficiency enhancement of feedforward amplifier by employing a negative group-delay circuit’, IEEE Trans. MTT, 2010, 58, (5), pp. 11161125 (doi: 10.1109/TMTT.2010.2045576).
    24. 24)
      • 27. Kandic, M., Bridges, G.E.: ‘Asymptotic limits of negative group delay in active resonator-based distributed circuits’, IEEE Trans. CAS I: Reg. Pap., 2011, 58, (8), pp. 17271735 (doi: 10.1109/TCSI.2011.2107251).
    25. 25)
      • 38. Myoung, S.-S., Kwon, B.-S., Kim, Y.-H., Yook, J.-G.: ‘Effect of group delay in RF BPF on impulse radio systems’, IEICE Trans. Commun., 2007, 90, (12), pp. 35143522 (doi: 10.1093/ietcom/e90-b.12.3514).
    26. 26)
      • 37. Abate, Z.: ‘WiMAX RF systems engineering’ (Mobile Communication Series, Artech House, Norwood, MA, USA, 2009), p. 314.
    27. 27)
      • 8. Mitchell, M.W., Chiao, R.Y.: ‘Negative group delay and ‘fronts’ in a causal system: an experiment with very low frequency bandpass amplifiers’, Phys. Lett. A, 1997, 230, pp. 133138 (doi: 10.1016/S0375-9601(97)00244-2).
    28. 28)
      • 29. Podilchak, S.K., Frank, B.M., Freundorfer, A.P., Antar, Y.M.M.: ‘High speed metamaterial-inspired negative group delay circuits in CMOS for delay equalization’. Proc. Second Microsystems and Nanoelectronics Research Conf. 2009 (MNRC 2009), Ottawa, ON, Canada, 13–14 October 2009, pp. 912.
    29. 29)
      • 24. McDonald, K.T.: ‘Negative group velocity’, Am. J. Phys., 2001, 69, (5), pp. 607614 (doi: 10.1119/1.1331304).
    30. 30)
      • 21. Ségard, B., Ségard, , Macke, B.: ‘Observation of negative velocity pulse propagation’, Phys. Lett., 1985, 109, pp. 213216 (doi: 10.1016/0375-9601(85)90305-6).
    31. 31)
      • 5. Bukhman, N.S., Bukhman, S.V.: ‘On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption’, Radiophys. Quant. Electron., 2004, 47, (1), pp. 6876 (doi: 10.1023/B:RAQE.0000031672.70934.3a).
    32. 32)
      • 18. Brillouin, L.: ‘Wave propagation and group velocity’ (Academic Press, New York, 1960) pp. 183 & 113–137.
    33. 33)
      • 10. Nakanishi, T., Sugiyama, K., Kitano, M.: ‘Demonstration of negative group delays in a simple electronic circuit’, Am. J. Phys., 2002, 70, (11), pp. 11171121 (doi: 10.1119/1.1503378).
    34. 34)
      • 20. Chu, S., Wong, S.: ‘Linear pulse propagation in an absorbing medium’, Phys. Rev. Lett., 1982, 48, pp. 738741 (doi: 10.1103/PhysRevLett.48.738).
    35. 35)
      • 19. Garrett, G.B., McGumber, D.E.: ‘Propagation of a Gaussian light pulse through an anomalous dispersion medium’, Phys. Rev. A, 1970, 1, pp. 305313 (doi: 10.1103/PhysRevA.1.305).
    36. 36)
      • 17. Woodley, J.F., Mojahedi, M.: ‘Negative group velocity and group delay in left-handed media’, Phys. Rev. E, 2004, 70, (046603), pp. 16.
    37. 37)
      • 23. Dogariu, A., Kuzmich, A., Wang, L.J.: ‘Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity’, Phys. Rev. A, 2001, 63, (053806), pp. 112.
    38. 38)
      • 7. Mitchell, M.W., Chiao, R.Y.: ‘Causality and negative group delays in a simple bandpass amplifier’, Am. J. Phys., 1998, 66, pp. 1419 (doi: 10.1119/1.18813).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0317
Loading

Related content

content/journals/10.1049/iet-cds.2012.0317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading