http://iet.metastore.ingenta.com
1887

Methodology of elementary negative group delay active topologies identification

Methodology of elementary negative group delay active topologies identification

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This work introduces a fundamental methodology enabling to identify the elementary negative group delay (NGD) topologies using transistors. These circuits are particularly beneficial compared to the other existing NGD topologies, with its flexibility to operate in ultra wideband (UWB), to compensate losses and potentially integrable. The basic families of NGD topologies obtained from the association of passive and active four-port networks are presented. The NGD existence condition is given. Based on this condition, the simplest NGD active cells are identified. After the analysis of passive networks formed by R, L and C components, first-order transfer functions of innovative elementary NGD cells are established. Then, similar to the classical circuits as the filters and amplifiers, synthesis relations for the design of integrable NGD topology with no self-element are introduced. To illustrate the relevance of the theoretic concept, a proof of concept was proposed. Finally, discussions on the applications of NGD circuits are offered in the conclusion.

References

    1. 1)
      • 1. Lucyszyn, S., Robertson, I.D., Aghvami, A.H.: ‘Negative group delay synthesiser’, Electron. Lett., 1993, 29, pp. 798800 (doi: 10.1049/el:19930533).
    2. 2)
      • 2. Broomfield, C.D., Everard, J.K.A.: ‘Broadband negative group delay networks for compensation of oscillators, filters and communication systems’, Electron. Lett., 2000, 23, pp. 19311933 (doi: 10.1049/el:20001377).
    3. 3)
      • 3. Eleftheriades, G.V., Siddiqui, O., Iyer, A.K.: ‘Transmission line for negative refractive index media and associated implementations without excess resonators’, IEEE MWC Lett., 2003, 13, (2), pp. 5153.
    4. 4)
      • 4. Siddiqui, O.F., Erickson, S.J., Eleftheriades, G.V., Mojahedi, M.: ‘Time-domain measurement of negative-index transmission-line metamaterials’, IEEE Trans. MTT, 2004, 52, (5), pp. 14491453 (doi: 10.1109/TMTT.2004.827018).
    5. 5)
      • 5. Bukhman, N.S., Bukhman, S.V.: ‘On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption’, Radiophys. Quant. Electron., 2004, 47, (1), pp. 6876 (doi: 10.1023/B:RAQE.0000031672.70934.3a).
    6. 6)
      • 6. Chiao, R.Y., Bolda, E.L., Bowie, J., Boyce, J., Mitchell, M.W.: ‘Superluminality and amplifiers’, Progr. Crystal Growth Charact. Mat., 1996, 33, pp. 319325 (doi: 10.1016/0960-8974(96)83663-1).
    7. 7)
      • 7. Mitchell, M.W., Chiao, R.Y.: ‘Causality and negative group delays in a simple bandpass amplifier’, Am. J. Phys., 1998, 66, pp. 1419 (doi: 10.1119/1.18813).
    8. 8)
      • 8. Mitchell, M.W., Chiao, R.Y.: ‘Negative group delay and ‘fronts’ in a causal system: an experiment with very low frequency bandpass amplifiers’, Phys. Lett. A, 1997, 230, pp. 133138 (doi: 10.1016/S0375-9601(97)00244-2).
    9. 9)
      • 9. Solli, D., Chiao, R.Y., Hickmannn, J.M.: ‘Superluminal effects and negative group delays in electronics, and their applications’, Phys. Rev. E, 2002, 66, (056601), pp. 14.
    10. 10)
      • 10. Nakanishi, T., Sugiyama, K., Kitano, M.: ‘Demonstration of negative group delays in a simple electronic circuit’, Am. J. Phys., 2002, 70, (11), pp. 11171121 (doi: 10.1119/1.1503378).
    11. 11)
      • 11. Kitano, M., Nakanishi, T., Sugiyama, K.: ‘Negative group delay and superluminal propagation: an electronic circuit approach’, IEEE J. Sel. Top. Quant. Electron., 2003, 9, (1), pp. 4351 (doi: 10.1109/JSTQE.2002.807979).
    12. 12)
      • 12. Munday, J.N., Henderson, R.H.: ‘Superluminal time advance of a complex audio signal’, Appl. Phys. Lett., 2004, 85, pp. 503504 (doi: 10.1063/1.1773926).
    13. 13)
      • 13. Lucyszyn, S., Robertson, I.D.: ‘Analog reflection topology building blocks for adaptive microwave signal processing applications’, IEEE Trans. MTT, 1995, MTT-43, (3), pp. 601611 (doi: 10.1109/22.372106).
    14. 14)
      • 14. Ravelo, B.: ‘Demonstration of negative signal delay with short-duration transient pulse’, Eur. Phys. J. Appl. Phys. (EPJAP), 2011, 55, pp. 18.
    15. 15)
      • 15. Ravelo, B.: ‘Baseband NGD circuit with RF amplifier’, Electron. Lett., 2011, 47, (13), pp. 752754 (doi: 10.1049/el.2011.1227).
    16. 16)
      • 16. Wang, L.J., Kuzmich, A., Dogariu, A.: ‘Gain-assisted superluminal light propagation’, Nature, 2000, 406, pp. 277279 (doi: 10.1038/35018520).
    17. 17)
      • 17. Woodley, J.F., Mojahedi, M.: ‘Negative group velocity and group delay in left-handed media’, Phys. Rev. E, 2004, 70, (046603), pp. 16.
    18. 18)
      • 18. Brillouin, L.: ‘Wave propagation and group velocity’ (Academic Press, New York, 1960) pp. 183 & 113–137.
    19. 19)
      • 19. Garrett, G.B., McGumber, D.E.: ‘Propagation of a Gaussian light pulse through an anomalous dispersion medium’, Phys. Rev. A, 1970, 1, pp. 305313 (doi: 10.1103/PhysRevA.1.305).
    20. 20)
      • 20. Chu, S., Wong, S.: ‘Linear pulse propagation in an absorbing medium’, Phys. Rev. Lett., 1982, 48, pp. 738741 (doi: 10.1103/PhysRevLett.48.738).
    21. 21)
      • 21. Ségard, B., Ségard, , Macke, B.: ‘Observation of negative velocity pulse propagation’, Phys. Lett., 1985, 109, pp. 213216 (doi: 10.1016/0375-9601(85)90305-6).
    22. 22)
      • 22. Steinberg, A.M., Chiao, R.Y.: ‘Dispersionless, highly superluminal propagation in a medium with a gain doublet’, Phys. Rev. A, 1994, 49, pp. 20712075 (doi: 10.1103/PhysRevA.49.2071).
    23. 23)
      • 23. Dogariu, A., Kuzmich, A., Wang, L.J.: ‘Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity’, Phys. Rev. A, 2001, 63, (053806), pp. 112.
    24. 24)
      • 24. McDonald, K.T.: ‘Negative group velocity’, Am. J. Phys., 2001, 69, (5), pp. 607614 (doi: 10.1119/1.1331304).
    25. 25)
      • 25. Ravelo, B.: ‘Investigation on Microwave NGD Circuit’, Electromagnetics, 2011, 31, (8), pp. 537549 (doi: 10.1080/02726343.2011.621106).
    26. 26)
      • 26. Ravelo, B., De Blasi, S.: ‘An FET-based microwave active circuit with dual-band negative group delay’, J. Microw. Optoelectron. Electromagn. Appl. (JMOe), 2011, 10, (2), pp. 355366 (doi: 10.1590/S2179-10742011000200006).
    27. 27)
      • 27. Kandic, M., Bridges, G.E.: ‘Asymptotic limits of negative group delay in active resonator-based distributed circuits’, IEEE Trans. CAS I: Reg. Pap., 2011, 58, (8), pp. 17271735 (doi: 10.1109/TCSI.2011.2107251).
    28. 28)
      • 28. Ahn, K.-P., Ishikawa, R., Honjo, K.: ‘Group delay equalized UWB InGaP/GaAs HBT MMIC amplifier using negative group delay circuits’, IEEE Trans. MTT, 2009, 57, (9), pp. 21392147 (doi: 10.1109/TMTT.2009.2027082).
    29. 29)
      • 29. Podilchak, S.K., Frank, B.M., Freundorfer, A.P., Antar, Y.M.M.: ‘High speed metamaterial-inspired negative group delay circuits in CMOS for delay equalization’. Proc. Second Microsystems and Nanoelectronics Research Conf. 2009 (MNRC 2009), Ottawa, ON, Canada, 13–14 October 2009, pp. 912.
    30. 30)
      • 30. Ravelo, B., Ben Hadj Slama, J.: ‘Equalization of digital/mixed-signal disturbances with a negative group delay circuit’. Proc. 16th IEEE Mediterranean Electrotechnical Conf. (MELECON 2012), Medine Yasmine Hammamet, Tunisia, 25–28 March 2012, pp. 844847.
    31. 31)
      • 31. Ravelo, B.: ‘Neutralization of LC- and RC-disturbances with left-handed and NGD effects’. Proc. Third Int. Conf. Metamaterials, Photonic Crystals and Plasmonics (META'12), Paris, France, 19–22 April 2012.
    32. 32)
      • 32. Eudes, T., Ravelo, B.: ‘Cancellation of delays in the high-rate interconnects with UWB NGD active cells’, Appl. Phys. Res., 2011, 3, (2), pp. 8188.
    33. 33)
      • 33. Keser, S., Mojahedi, M.: ‘Broadband negative group delay microstrip phase shifter design’. Proc. IEEE Ant. Prop. Soc. Int. Symp. 2009 (APSURSI'09), Charleston, SC, 1–5 June 2009, pp. 14.
    34. 34)
      • 34. Ravelo B.: Étude des circuits analogiques-numériques NGD et leurs applications: Théorie fondamentale et expérimentations des circuits analogiques et numériques à temps négatif et leurs applications, (in French) Éditions Universitaires Européennes (EUE), Chapter 10, No. 10802, Ed. par GmbH & Co. KG, Sarrebruck, Germany, 432 Pages, January 2012.
    35. 35)
      • 35. Ravelo B.: ‘Theory and design of analogue and numerical elementary NGD circuits: theoretical characterization of analogue and numerical elementary NGD circuits, LAP Lambert’ (Academic Publishing, Germany, 2012), Chapter 8, Ed. by Etomsa GmbH & Co. KG, Sarrebruck, pp. 344.
    36. 36)
      • 36. Choi, H., Jeong, Y., Kim, C.D., Kenney, J.S.: ‘Efficiency enhancement of feedforward amplifier by employing a negative group-delay circuit’, IEEE Trans. MTT, 2010, 58, (5), pp. 11161125 (doi: 10.1109/TMTT.2010.2045576).
    37. 37)
      • 37. Abate, Z.: ‘WiMAX RF systems engineering’ (Mobile Communication Series, Artech House, Norwood, MA, USA, 2009), p. 314.
    38. 38)
      • 38. Myoung, S.-S., Kwon, B.-S., Kim, Y.-H., Yook, J.-G.: ‘Effect of group delay in RF BPF on impulse radio systems’, IEICE Trans. Commun., 2007, 90, (12), pp. 35143522 (doi: 10.1093/ietcom/e90-b.12.3514).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0317
Loading

Related content

content/journals/10.1049/iet-cds.2012.0317
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address