access icon free Broadband equivalent circuit modelling of spiral resonators for printed circuit board applications

This study presents a new equivalent circuit modelling methodology for various-type spiral resonators in printed circuit board environment. The N-turn spiral resonator can be decomposed into an N Π-equivalent circuit model, and each Π-model is comprised of a series inductance, parallel capacitance, two shunt capacitors and the resistances of the conductor and dielectric. Both the inductance and capacitance of the equivalent circuit are calculated by the proposed formulas, which are based on the electromagnetic theory. It has been demonstrated that the proposed equivalent circuit model of the spiral resonator is well matched in S-parameters, Q-factor and inductance values as well as in self-resonance frequency values within 8% tolerance with measurement and full-wave electromagnetic field solver.

Inspec keywords: S-parameters; equivalent circuits; Q-factor; resonators

Other keywords: conductor; N-turn spiral resonator; S-parameters; parallel capacitance; electromagnetic theory; N Π-equivalent circuit model; full-wave electromagnetic field solver; Q-factor; series inductance; broadband equivalent circuit modelling; printed circuit board environment; self-resonance frequency; shunt capacitors

Subjects: Waveguide and microwave transmission line components

References

    1. 1)
      • 3. Bae, H.C., Oh, S.H.: ‘Parallel-branch spiral inductors with enhanced quality factor and resonance frequency’, J. Korea Electromagn. Eng. Soc., 2008, 8, (2), pp. 4751.
    2. 2)
      • 14. Chung, T.H., Kang, H.D., Yook, J.G.: ‘Equivalent model of circular-type spiral inductor in printed circuit board’, Microw. Opt. Technol. Lett., 2013, 55, (2), pp. 337340 (doi: 10.1002/mop.27287).
    3. 3)
      • 19. Hsu, H.M.: ‘Analytical formula for inductance of metal of various widths in spiral inductors’, IEEE Trans. Electron Devices, 2004, 51, (8), pp. 13431346 (doi: 10.1109/TED.2004.832094).
    4. 4)
      • 6. Cao, Y., Groves, R.A., Huang, X., et al: ‘Frequency-independent equivalent circuit model for on-chip spiral inductors’, IEEE J. Solid-State Circuits, 2003, 38, (3), pp. 419426 (doi: 10.1109/JSSC.2002.808285).
    5. 5)
      • 12. Bahl, I.: ‘Lumped element for RF and microwaves circuit’ (Artech House, 2003).
    6. 6)
      • 7. Gil, J., Shin, H.: ‘A simple wide-band on-chip inductor model for silicon-based RF ICs’, IEEE Trans. Microw. Theory Tech., 2003, 51, (9), pp. 20232028 (doi: 10.1109/TMTT.2003.815870).
    7. 7)
      • 2. Koutsoyannopoulos, Y.K., Papananos, Y.: ‘Systematic analysis and modeling of integrated inductors and transformers in RFIC design’, IEEE Trans. Circuits Syst. II, 2000, 47, (8), pp. 699713 (doi: 10.1109/82.861403).
    8. 8)
      • 4. Jiang, Z., Excell, P.S., Hejazi, Z.M.: ‘Calculation of distributed capacitances of spiral resonators’, IEEE Trans. Microw. Theory Tech., 1997, 45, pp. 139142 (doi: 10.1109/22.552045).
    9. 9)
      • 9. Kang, H.D., Kim, H., Kim, S.G., Yook, J.G.: ‘A localized enhanced power plane topology for wideband suppression of simultaneous switching noise’, IEEE Trans. Electromagn. Compat., 2010, 52, (2), pp. 373380 (doi: 10.1109/TEMC.2010.2044415).
    10. 10)
      • 16. Chung, T.H., Kang, H.D., Yook, J.G.: ‘A noise suppression technique using dual layer spirals with various ground structure for high-speed PCBs’, Prog. Electromagn. Res. B, 2013, 46, pp. 337356.
    11. 11)
      • 17. Horng, T.S., Wu, J.M., Yang, L.Q., Fang, S.T.: ‘A novel modified-T equivalent circuit for modeling LTCC embedded inductors with a large bandwidth’, IEEE Trans. Microw. Theory Tech., 2003, 51, (12), pp. 23272333 (doi: 10.1109/TMTT.2003.819772).
    12. 12)
      • 18. Kolding, T.E.: ‘On-wafer calibration techniques for giga-hertz CMOS measurements’. IEEE Int. Conf. Microelectronic Test Structures (ICMTS), March 1999, pp. 105110.
    13. 13)
      • 21. Shi, J., Yin, W.-Y., Liao, H., Mao, J.-F.: ‘The enhancement of Q factor for patterned ground shield inductors at high temperatures’, IEEE Trans. Magn., 2006, 42, (7), pp. 18731875 (doi: 10.1109/TMAG.2006.874186).
    14. 14)
      • 1. Long, J.R., Copeland, M.A.: ‘The modeling, characterization, and design of monolithic inductors for silicon RF ICs’, IEEE J. Solid-State Circuits, 1997, 32, pp. 357369 (doi: 10.1109/4.557634).
    15. 15)
      • 11. Kim, D.Y., Joo, S.H., Lee, H.Y.: ‘A power plane using the hybrid-cell EBG structure for the suppression of GBN/SSN’, J. Korea Electromagn. Eng. Soc., 2007, 18, (2), pp. 206212 (doi: 10.5515/KJKIEES.2007.18.2.206).
    16. 16)
      • 20. Yue, C.P., Wong, S.S.: ‘On-chip spiral inductors with patterned ground shields for Si-based RF IC's’, IEEE J. Solid-State Circuits, 1998, 33, pp. 743752 (doi: 10.1109/4.668989).
    17. 17)
      • 15. Johnson, H., Graham, M.: ‘High-speed digital design’ (Prentice-Hall, 1993).
    18. 18)
      • 5. Mohan, S.S., Hershenson, M., Boyd, S.P., Lee, T.H.: ‘Simple accurate expressions for planar spiral inductances’, IEEE J. Solid-State Circuits, 1999, 34, (10), pp. 14191424 (doi: 10.1109/4.792620).
    19. 19)
      • 8. Huang, F., Lu, J., Jiang, N., Zhang, X., Wu, W., Wang, Y.: ‘Frequency-independent asymmetric double-π equivalent circuit for on-chip spiral inductors: physics-based modeling and parameter extraction’, IEEE J. Solid-State Circuits, 2006, 41, (10), pp. 22722283 (doi: 10.1109/JSSC.2006.881574).
    20. 20)
      • 10. Chung, T.H., Kang, H.D., Yook, J.G.: ‘Power noise suppression techniques using spiral resonator in high-speed PCB’. IEEE Electrical Design of Advanced Packaging and Systems, December 2010, pp. 14.
    21. 21)
      • 13. Greenhouse, H.M.: ‘Design of planar rectangular microelectronic inductors’, IEEE Trans. Parts Hybrids Packag., 1974, 10, (2), pp. 101109 (doi: 10.1109/TPHP.1974.1134841).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0270
Loading

Related content

content/journals/10.1049/iet-cds.2012.0270
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading