Short-critical-path and structurally orthogonal scaled CORDIC-based approximations of the eight-point discrete cosine transform

Short-critical-path and structurally orthogonal scaled CORDIC-based approximations of the eight-point discrete cosine transform

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A family of multiplierless transforms is presented that approximate the eight-point type-II discrete cosine transform (DCT) as accurately as the state-of-the-art scaled DCT schemes, but having 14–17% shorter critical paths (1/6 or 1/7 less adders). Compared to the existing solutions that use the coordinate rotation digital computer (CORDIC) algorithm, the advantage of higher throughput is accompanied by saving additions. Only some lifting-based BinDCT schemes require less adders in total, in spite of longer critical paths. The transforms have been derived from the fast Loeffler's algorithm by replacing the rotation stage with unfolded CORDIC iterations, which have been arranged so that two rotation approximations use the same scaling. This is equivalent to imposing structural orthogonality (losslessness) on a system, from which the scaling can then be extracted so as to shorten the critical path. Supporting ideas are a notation for more conveniently describing CORDIC circuits, and an angle conversion that allows rotations to be approximated using an extended set of CORDIC circuits. The research results have been validated by field programmable gate array-based hardware design experiments and by usability tests based on a software JPEG codec.


    1. 1)
      • 1. Britanak, V., Yip, P.C., Rao, K.R.: ‘Discrete cosine and sine transforms: general properties, fast algorithms and integer approximations’ (Elsevier/Academic Press, Amsterdam, 2007).
    2. 2)
      • 2. Loeffler, C., Lightenberg, A., Moschytz, G.: ‘Practical fast 1-D DCT algorithms with 11 multiplications’. Proc. IEEE Int. Conf. Acoustic, Speech, Signal Processing (ICASSP), Glasgow, Scotland, 23–26 May 1989, vol. 2, pp. 988991.
    3. 3)
      • 3. Chen, W., Smith, C.H., Fralick, S.C.: ‘A fast computational algorithm for the discrete cosine transform’, IEEE Trans. Commun., 1977, 25, (9), pp. 10041009 (doi: 10.1109/TCOM.1977.1093941).
    4. 4)
      • 4. Liang, J., Tran, T.D.: ‘Fast multiplierless approximations of the DCT with the lifting scheme’, IEEE Trans. Signal Process., 2001, 49, (12), pp. 30323044 (doi: 10.1109/78.969511).
    5. 5)
      • 5. Parfieniuk, M., Petrovsky, A.: ‘Structurally orthogonal finite precision implementation of the eight point DCT’. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), Toulouse, France, 14–19 May 2006, vol. 3, pp. 936939.
    6. 6)
      • 6. Sun, C.-C., Ruan, S.-J., Heyne, B., Goetze, J.: ‘Low-power and high-quality CORDIC-based Loeffler DCT for signal processing’, IET Circuits Devices Syst., 2007, 1, (6), pp. 453461 (doi: 10.1049/iet-cds:20060289).
    7. 7)
      • 7. Parfieniuk, M.: ‘Shortening the critical path in CORDIC-based approximations of the eight-point DCT’. Proc. Int. Conf. Signals Electronic Systems (ICSES), Cracow, Poland, 14–17 September 2008, pp. 405408.
    8. 8)
      • 8. Fox, T.W., Turner, L.E.: ‘Rapid prototyping of field programmable gate array-based discrete cosine transform approximations’, EURASIP J. Appl. Signal Process., 2003, 2003, (6), pp. 543554 (doi: 10.1155/S1110865703301027).
    9. 9)
      • 9. Wu, Z., Sha, J., Wang, Z., Li, L., Gao, M.: ‘An improved scaled DCT architecture’, IEEE Trans. Consum. Electron., 2009, 55, (2), pp. 685689 (doi: 10.1109/TCE.2009.5174440).
    10. 10)
      • 10. Vaidyanathan, P.P., Doğanata, Z.: ‘The role of lossless systems in modern digital signal processing: a tutorial’, IEEE Trans. Educ., 1989, 32, (3), pp. 181197 (doi: 10.1109/13.34150).
    11. 11)
      • 11. Calderbank, A.R., Daubechies, I., Sweldens, W., Yeo, B.-L.: ‘Wavelet transforms that map integers to integers’, Appl. Comput. Harmon. Anal., 1998, 5, (3), pp. 332369 (doi: 10.1006/acha.1997.0238).
    12. 12)
      • 12. Britanak, V.: ‘New universal rotation-based fast computational structures for an efficient implementation of the DCT-iv/DST-iv and analysis/synthesis MDCT/MDST filter banks’, Signal Process., 2009, 89, (11), pp. 22132232 (doi: 10.1016/j.sigpro.2009.04.041).
    13. 13)
      • 13. Krishna, G., Sridhar, T., Kumar, K.: ‘Design and implementation of low power fast DCT architecture using modified FGA algorithm’, Int. J. Syst., Algorith. Appl., 2012, 2, pp. 7376.
    14. 14)
      • 14. Hsiao, S.-F., Hu, Y.H., Juang, T.-B., Lee, C.-H.: ‘Efficient VLSI implementations of fast multiplierless approximated DCT using parameterized hardware modules for silicon intellectual property design’, IEEE Trans. Circuits Syst. I, 2005, 52, (8), pp. 15681579 (doi: 10.1109/TCSI.2005.851709).
    15. 15)
      • 15. Jeong, H., Kim, J., Cho, W.-k.: ‘Low-power multiplierless DCT architecture using image data correlation’, IEEE Trans. Consum. Electron., 2004, 50, (1), pp. 262267 (doi: 10.1109/TCE.2004.1277872).
    16. 16)
      • 16. Yu, S., Swartzlander, E.E.: ‘A scaled DCT architecture with the CORDIC algorithm’, IEEE Trans. Signal Process., 2002, 50, (1), pp. 160167 (doi: 10.1109/78.972492).
    17. 17)
      • 17. Meher, P., Valls, J., Juang, T.-B., Sridharan, K., Maharatna, K.: ‘50 years of CORDIC: algorithms, architectures, and applications’, IEEE Trans. Circuits Syst. I, 2009, 56, (9), pp. 18931907 (doi: 10.1109/TCSI.2009.2025803).
    18. 18)
      • 18. Wu, A.Y., Wu, C.S.: ‘A unified view for vector rotational CORDIC algorithms and architectures based on angle quantization approach’, IEEE Trans. Circuits Syst. I, 2002, 49, (10), pp. 14421456 (doi: 10.1109/TCSI.2002.803363).
    19. 19)
      • 19. Wu, C.S., Wu, A.Y., Lin, C.H.: ‘A high-performance/low-latency vector rotational CORDIC architecture based on extended elementary angle set and trellis-based searching schemes’, IEEE Trans. Circuits Syst. II, 2003, 50, (9), pp. 589601 (doi: 10.1109/TCSII.2003.816923).
    20. 20)
      • 20. Rieder, P., Götze, J., Nossek, J.A., Burrus, C.S.: ‘Parameterization of orthogonal wavelet transforms and their implementation’, IEEE Trans. Circuits Syst. II, 1998, 45, (2), pp. 217226 (doi: 10.1109/82.661654).
    21. 21)
      • 21. Moulin, P.: ‘A multiscale relaxation algorithm for SNR maximization in nonorthogonal subband coding’, IEEE Trans. Image Process., 1995, 4, (9), pp. 12691281 (doi: 10.1109/83.413171).
    22. 22)
      • 22. Kok, C.W., Nguyen, T.Q.: ‘Multirate filter banks and transform coding gain’, IEEE Trans. Signal Process., 1998, 46, (7), pp. 20412044 (doi: 10.1109/78.700978).
    23. 23)
      • 23. Madanayake, A., Cintra, R., Onen, D., et al: ‘A row-parallel 8 × 8 2-D DCT architecture using algebraic integer-based exact computation’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (6), pp. 915929 (doi: 10.1109/TCSVT.2011.2181232).
    24. 24)
      • 24. Independent JPEG Group (IJG): ‘JPEG image compression software’. Available at

Related content

This is a required field
Please enter a valid email address