High-accuracy thermoelectrical module model for energy-harvesting systems

High-accuracy thermoelectrical module model for energy-harvesting systems

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study proposes a new SPICE model for thermoelectrical modules (TEMs) that takes into account the internal parameters variation with temperature. Prior work considers constant values for the three factors that determine the figure of merit: Z = ((σS 2)/k), that is the electrical conductivity, the Seebeck coefficient and the thermal conductivity. This leads to large errors in simulation because the parameters vary strongly with temperature. The new model also employs the parasitic elements that appear in a TEM and not discussed in prior works. The proposed model uses experimental data from several TEMs of different manufacturers. The thermoelectrical model of the entire system will be afterwards validated through experiment. A thermoelectric energy-harvesting system is proposed and simulated based on the improved TEMs model. The results show that our model can be used for more accurate simulations when designing TEM-based applications.


    1. 1)
      • 1. McCoy, J.: ‘Thermoelectric technology: materials, processes, devices and systems’, ASM San Diego Chapter, January 2012, available at, accessed November 2012.
    2. 2)
      • 2. Mirocha, A., Dziurdzia, P.: ‘Improved electrothermal model of the thermoelectric generator implemented in SPICE’. Int. Conf. Signals And Electronic Systems, ICSES, Krakow, Poland, September, 2008.
    3. 3)
      • 3. Mateu, L., Codrea, C., Lucas, N., Pollak, M., Spies, P.: ‘Energy harvesting for wireless communication systems using thermogenerators’. Proc. the XXI Conf. on Design of Circuits and Integrated Systems (DCIS), Barcelona, Spain, 2006.
    4. 4)
      • 4. Lineykin, S., Ben-Yaakov, S.: ‘Modeling and analysis of thermoelectric modules’, IEEE Trans. Ind. Appl., 2007, 43, (2), pp. 505512 (doi: 10.1109/TIA.2006.889813).
    5. 5)
      • 5. Yang, M.W., Xu, W.H., Tang, W.Y.: ‘Thermal analysis of laser diode module by an equivalent electrical network method’, Optoelectron. Lett., 2006, 2, (4), pp. 273277 (doi: 10.1007/BF03033658).
    6. 6)
      • 6. Alaoui, C.: ‘Peltier thermoelectric modules modeling and evaluation’, Int. J. Eng., 2011, 5, (1), pp. 114121.
    7. 7)
      • 7. Cernaianu, M., Cernaianu, A., Cirstea, C., Gontean, A.: ‘Thermo electrical generator improved model’. Int. Conf. Power and Energy Systems – ICPES, Hong Kong, April 2012, pp. 343348.
    8. 8)
      • 8. Chen, M., Rosendahl, L.A., Condra, T.J., Pedersen, J.K.: ‘Numerical modeling of thermoelectric generators with varing material properties in a circuit simulator’, IEEE Trans. Energy Convers., 2009, 24, (1), pp. 112124 (doi: 10.1109/TEC.2008.2005310).
    9. 9)
      • 9. Chen, M., Rosendahl, L.A., Bach, I., et al: ‘Transient behavior study of thermoelectric generators through an electro-thermal model using SPICE’. 25th Int. Conf. on Thermoelectronics, ICT, 2006, pp. 214219.
    10. 10)
      • 10. ‘Everredtronics LTD. Technical Info’, available at, accessed August 2012.
    11. 11)
      • 11. Melcor, Application Notes for Thermoelectric Devices’, former, acquired by Laird Technologies,, accessed October 2012.
    12. 12)
      • 12. Popa, B.: ‘The thermotechnician engineer handbook’ (Technical Publishing, Romanian, 1986).
    13. 13)
      • 13. ‘ThermaCAM E2 Datasheet’, available at, accessed November 2011.
    14. 14)
      • 14. Laprade, A, Pearson, S, Benczkowski, S, Dolny, G, Wheatley, F: ‘A new PSPICE electro-thermal subcircuit for power MOSFETs’, Fairchild Semiconductor Application Note 7534, July 2004.
    15. 15)
      • 15. Cernaianu, , M., , Gontean, , A.: ‘Parasitic elements modelling in thermoelectric modules’, unpublished.
    16. 16)
      • 16. Gorbachuk, N.P., Bolgar, A.S., Sidorko, V.R., Goncharuk, L.V.: ‘Heat capacity and enthalpy of Bi2Si3 and Bi2Te3 in the temperature range 58–1012 K’, Powder Metall. Met. Ceram., 2004, 43, (5–6), pp. 284290 (doi: 10.1023/B:PMMC.0000042464.28118.a3).
    17. 17)
      • 17. Nenitescu, C.D.: ‘General chemistry’ (Didactic and Pedagogical Publishing, Bucharest, Romanian, 1972).
    18. 18)
      • 18. ‘Elements, Chemical and Chemistry – Molar Mass of Bismuth telluride’, available at, accessed August 2012.
    19. 19)
      • 19. Raznjevic, K.: ‘Thermodynamic tables and diagrams’ (Technical Publishing, Romanian, 1978).
    20. 20)
      • 20. Zorbas, K.T., Hatzikraniotis, E., Paraskevopoulos, K.M.: ‘Power and efficiency calculation in commercial TEG and application in wasted heat recovery in automobile’. Fifth European Conf. on Thermoelectrics, Odessa, Ukraine, 2007, vol. i, no. (3), pp. 292298.
    21. 21)
      • 21. Bica, M., Nagi, M., Cernaianu, C.D., Bara, N.: ‘Heat transfer’ (Universitaria Publishing, Craiova, Romania, Romanian, 2009).
    22. 22)
      • 22. Hensen, J., Nakhi, A.: ‘Fourier and Biot numbers and the accuracy of conduction modelling’. Proc. Bep 94 Conf. ‘Facing the Future’, 1994, pp. 247256.
    23. 23)
      • 23. Wang, T.Y., Chen, C.: ‘SPICE-compatible thermal simulation with lumped circuit modeling for thermal reliability analysis based on modeling order reduction’. IEEE Proc. Fifth Int. Symp. on Quality Electronic Design., 2004.
    24. 24)
      • 24. ‘LTC3105 Step-up DC-DC Converter Datasheet’, available at, accessed November 2012.
    25. 25)
      • 25. Abu-Sharkh, S., Doerffel, D.: ‘Rapid test and non-linear model characterisation of solid-state lithium-ion batteries’, J. Power Sources,2004, 130, (2004), pp. 266274 (doi: 10.1016/j.jpowsour.2003.12.001).
    26. 26)
      • 26. Intusoft Newsletter: ‘Personal computer circuit & system design tools’, Issue 78, Nov. 2005.

Related content

This is a required field
Please enter a valid email address