Effects of imbalance input on linearity of pseudodifferential ladder Gm-C filters

Effects of imbalance input on linearity of pseudodifferential ladder Gm-C filters

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents distortion analysis of the fully differential Gm-C filters in which the imbalance of the differential input voltages is taken into consideration. Closed-form equations expressing distortions of differential-mode (DM) output voltages as functions of DM and common-mode input voltages are developed. It was found that the HD3 of the DM output voltage is independent of the input imbalance. On the contrary, the HD2 of the DM output voltage is directly dependent upon the input imbalance. Simulation results are shown to be in good agreement with the analytical results.


    1. 1)
      • 1. Wambacq, P., Sansen, W.: ‘Distortion analysis of analog integrated circuits’ (Kluwer, Norwell, MA, 1998).
    2. 2)
      • 2. Fong, E., Zeman, R.: ‘Analysis of harmonic distortion in single channel MOS integrated circuits’, IEEE J. Solid-State Circuits, 1982, SC-17, (1), pp. 8386 (doi: 10.1109/JSSC.1982.1051692).
    3. 3)
      • 3. Cherry, J., Snelgrove, W.M.: ‘On the characterization and reduction of distortion in bandpass filters’, IEEE Trans. Circuits Syst. I, 1998, 45, (5), pp. 523537 (doi: 10.1109/81.668864).
    4. 4)
      • 4. Palaskas, Y., Tsividis, Y.: ‘Dynamic range optimization of weakly nonlinear, fully balanced, Gm-C filters with power dissipation constraints’, IEEE Trans. Circuits Syst. II, 2003, 50, (10), pp. 714727 (doi: 10.1109/TCSII.2003.818365).
    5. 5)
      • 5. Zhang, Z., Celik, A., Sotiriadis, P.: ‘State space harmonic distortion modeling in weakly nonlinear, fully balanced Gm-C filters a modular approach resulting in closed form’, IEEE Trans. Circuits Syst. I, 2006, 53, (1), pp. 4859 (doi: 10.1109/TCSI.2005.854296).
    6. 6)
      • 6. Sotiriadis, P., Celik, A., Loizos, D., Zhang, Z.: ‘Fast state-space harmonic-distortion estimation in weakly nonlinear Gm-C filters’, IEEE Trans. Circuits Syst. I, 2007, 54, (1), pp. 218228 (doi: 10.1109/TCSI.2006.887458).
    7. 7)
      • 7. Palumbo, G, Pennisi, M, Pennisi, S.: ‘Distortion analysis in the frequency domain of a Gm-C biquad’. ECCTD Circuit Theory and Design, Seville, Spain, August 2007, pp. 212215.
    8. 8)
      • 8. Choogorn, T., Mahattanakul, J., Worapishet, A.: ‘Analysis of the common-moCde induced differential-mode distortion in Gm-C filters’. Proc. Int. Symp. Circuits Systems, Paris, France, May 2010, pp. 36213624.
    9. 9)
      • 9. Blaakmeer, S.C., Klumperink, E.A.M., Leenaerts, D.M.W., Nauta, B.: ‘Wideband balun-LNA with simultaneous output balancing, noise-canceling and distortion-canceling’, IEEE J. Solid-State Circuits, 2008, 43, (6), pp. 13411350 (doi: 10.1109/JSSC.2008.922736).
    10. 10)
      • 10. Rao, P.Z., Chang, T.Y., Liang, C.P., Chung, S.J.: ‘An ultra-wideband high-linearity CMOS mixer with new wideband active baluns’, IEEE Trans. Microw. Theory Tech., 2009, 57, (9), pp. 21842192 (doi: 10.1109/TMTT.2009.2027079).
    11. 11)
      • 11. Mavridis, D., Papamichail, M., Kalivas, G., Papadopoulos, G.: ‘Inductive coupling for imbalance improvement in a UWB balun employed in a folded cascade mixer’. Proc. IEEE Int. Conf. Electronics, Circuits, and Systems, Athens, Greece, December 2010, pp. 178181.
    12. 12)
      • 12. Razavi, B.: ‘Design of analog CMOS integrated circuits’ (McGraw-Hill, 2000).
    13. 13)
      • 13. Johns, D., Martin, K.: ‘Analog integrated circuit design’ (Wiley, New York, 1997).
    14. 14)
      • 14. Crovetti, P.S.: ‘Finite common-mode rejection in fully differential nonlinear circuits’, IEEE Trans. Circuits Syst. II, 2011, 58, (8), pp. 507511 (doi: 10.1109/TCSII.2011.2158717).
    15. 15)
      • 15. Choogorn, T., Mahattanakul, J.: ‘Relationship between common-mode rejection and differential-mode distortion in fully-differential Gm-C filters’, IET Circuits Dev. Syst., 2011, 5, (12), pp. 518526 (doi: 10.1049/iet-cds.2011.0050).
    16. 16)
      • 16. Buonomo, A., Schiavo, A.L.: ‘Perturbation analysis of nonlinear distortion in analog integrated circuits’, IEEE Trans. Circuits Syst. I, 2005, 52, (8), pp. 16201631.
    17. 17)
      • 17. Koziel, S., Szczepanski, S., Schaumann, R.: ‘General approach to continuous-time Gm-C filters based on matrix description’. Proc. IEEE Int. Symp. Circuits Syst., Arizona, USA, May 2002, pp. 647650.
    18. 18)
      • 18. Koziel, S., Szczepanski, S.: ‘Dynamic range comparison of voltage-mode and current-mode state-space Gm-C biquad filters in reciprocal structures’, IEEE Trans. Circuits Syst. I, 2003, 50, (10), pp. 12451255 (doi: 10.1109/TCSI.2003.817764).
    19. 19)
      • 19. Nauta, B.: ‘A CMOS transconductance-C filter technique for very high frequencies’, IEEE J. Solid-State Circuits, 1992, 27, (2), pp. 142153 (doi: 10.1109/4.127337).
    20. 20)
      • 20. Khumsat, P., Worapishet, A., Noulkaew, K., Soorapanth, T.: ‘Differential-mode/common-mode feedforward transconductor for low-voltage Gm-C filters’. Proc. IEEE Int. Conf. Electronic, Circuits and Systems, Nice, France, December 2006, pp. 8285.

Related content

This is a required field
Please enter a valid email address