Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology

A monolithic low-voltage H-bridge brushless DC (BLDC) vibration motor driver with an integrated high sensitivity Hall sensor has been presented in 0.18 μm high-voltage complementary metal-oxide semiconductor technology. To improve the motor start-up reliability, a full-on start mode is applied to realise a high-speed start sequence by shortening the start-up time. Meanwhile, an active start function is activated to prevent dead point phenomenon if the motor magnet pole sensed by the built-in Hall sensor does not change during the motor starting. This complete one-chip solution for driving the BLDC vibration motors provides significantly enhanced reliabilities, including thermal shutdown and under voltage lockout protection functions, and fully eliminates the need for any external components. The measured results show that the motor driver chip has a typical operating point of 2 mT and a typical releasing point of − 2 mT, showing a hysteresis magnetic property of 4 mT. The chip is very robust. It can operate well within a low supply voltage range of 2–4 V and can output a maximum of 300 mA peak current while the ambient temperature ranges from − 40 to 85°C.

References

    1. 1)
      • 8. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New single chip Hall sensors for three phases brushless motor control’, Sens. Actuators A, 2000, 81, pp. 320323 (doi: 10.1016/S0924-4247(99)00101-6).
    2. 2)
      • 16. Bilotti, A., Monreal, G.: ‘Chopper-stabilized amplifiers with a track-and-hold signal demodulator’, IEEE Trans. Circuits Syst. I, 1999, 46, pp. 490495 (doi: 10.1109/81.754850).
    3. 3)
      • 5. Gian, S.R.: ‘Monolithic integrated Hall devices in silicon circuits’, Microelectron. J., 1981, 12, pp. 2429 (doi: 10.1016/S0026-2692(81)80360-6).
    4. 4)
      • 3. Chiu, C.L., Chen, Y.T., Liang, Y.L., Liang, R.H.: ‘Optimal driving efficiency design for the single-phase brushless DC fan motor’, IEEE Trans. Magn., 2010, 46, pp. 11231130 (doi: 10.1109/TMAG.2009.2035051).
    5. 5)
      • 7. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New fully integrated 3-D silicon Hall sensor for precise angular-position measurements’, Sens. Actuators A, 1998, 67, pp. 7276 (doi: 10.1016/S0924-4247(97)01750-0).
    6. 6)
      • 14. van der Meer, J.C., Riedijk, F.R., van Kampen, E., Makinwa, K.A.A., Huijsing, J.H.: ‘A fully integrated CMOS Hall sensor with a 3.65 μT 3σ offset for compass applications’. IEEE Int. Solid-State Circuits Conf., February 2005, pp. 246247.
    7. 7)
      • 17. Bakker, A., Thiele, K., Huijsing, J.: ‘A CMOS nested-chopper instrumental amplifier with 100-nV offset’, IEEE J. Solid-State Circuits, 2000, 35, pp. 18771883 (doi: 10.1109/4.890300).
    8. 8)
      • 11. Randjelovic, Z.B., Kayal, M., Popovic, R., Blanchard, H.: ‘High sensitive Hall magnetic sensor microsystem in CMOS technology’, IEEE J. Solid-State Circuits, 2002, 37, pp. 151158 (doi: 10.1109/4.982421).
    9. 9)
      • 12. Blanchard, H., Montmollin, F. De., Hubin, J., Popovic, R.S.: ‘Highly sensitive Hall sensor in CMOS technology’, Sens. Actuators A, 2000, 82, pp. 144148 (doi: 10.1016/S0924-4247(99)00329-5).
    10. 10)
      • 19. Hu, Y., Yang, W.R.: ‘CMOS Hall sensor using dynamic quadrature offset cancellation’. Proc. 8th Int. Conf. on Solid-State and Integrated Circuit Technology, October 2006, pp. 284286.
    11. 11)
      • 10. Popovic, R.S., Randjelovic, Z., Manic, D.: ‘Integrated Hall-effect magnetic sensors’, Sens. Actuators A, 2001, 91, pp. 4650 (doi: 10.1016/S0924-4247(01)00478-2).
    12. 12)
      • 4. Alaeinovin, P., Jatskevich, J.: ‘Hall-sensor signals filtering for improved operation of brushless DC motors’. IEEE Int. Symp. on Industrial Electronics, June 2011, pp. 2730.
    13. 13)
      • 15. Enz, C.C., Temes, G.C.: ‘Circuit techniques for reducing the effects of op-amp imperfections: autozeroing correlated double sampling, and chopper stabilization’, Proc. IEEE, 1996, 84, pp. 15841614 (doi: 10.1109/5.542410).
    14. 14)
      • 2. Rodriguez, F., Emadi, A.: ‘A novel digital control technique for brushless DC motor drives’, IEEE Trans. Ind. Electron., 2007, 54, pp. 23652373 (doi: 10.1109/TIE.2007.900312).
    15. 15)
      • 20. Ouffoue, C., Frick, V., Kern, C., Hébrard, L.: ‘New fully differential instrumental chain for Hall sensor signal conditioning integrated in standard 0.35 μm CMOS process’. Proc. Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conf., June 2009, pp. 14.
    16. 16)
      • 18. Bilotti, A., Monreal, G., Vig, R.: ‘Monolithic magnetic Hall sensor using dynamic quadrature offset cancellation’, IEEE J. Solid-State Circuits, 1997, 32, pp. 829835 (doi: 10.1109/4.585275).
    17. 17)
      • 9. Bellekom, S.: ‘CMOS versus bipolar Hall plates regarding offset correction’, Sens. Actuators A, 1999, 76, pp. 178182 (doi: 10.1016/S0924-4247(99)00007-2).
    18. 18)
      • 13. Xu, Y., Pan, H.B.: ‘An improved equivalent simulation model for CMOS integrated hall plates’, Sensors, 2011, 11, pp. 62846296 (doi: 10.3390/s110606284).
    19. 19)
      • 1. Xia, C.L., Li, Z.Q., Shi, T.N.: ‘A control strategy for four-switch three-phase brushless DC motor using single current sensor’, IEEE Trans. Ind. Electron., 2009, 56, pp. 20582066 (doi: 10.1109/TIE.2009.2014307).
    20. 20)
      • 6. Kanda, Y., Migitaka, M., Yamamoto, H., Morozumi, H., Okabe, T., Okazaki, S.: ‘Silicon Hall-effect power IC's for brushless motors’, IEEE Trans. Electron Devices, 1982, 29, pp. 151154 (doi: 10.1109/T-ED.1982.20673).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0167
Loading

Related content

content/journals/10.1049/iet-cds.2012.0167
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address