Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology

Monolithic H-bridge brushless DC vibration motor driver with a highly sensitive Hall sensor in 0.18 μm complementary metal-oxide semiconductor technology

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A monolithic low-voltage H-bridge brushless DC (BLDC) vibration motor driver with an integrated high sensitivity Hall sensor has been presented in 0.18 μm high-voltage complementary metal-oxide semiconductor technology. To improve the motor start-up reliability, a full-on start mode is applied to realise a high-speed start sequence by shortening the start-up time. Meanwhile, an active start function is activated to prevent dead point phenomenon if the motor magnet pole sensed by the built-in Hall sensor does not change during the motor starting. This complete one-chip solution for driving the BLDC vibration motors provides significantly enhanced reliabilities, including thermal shutdown and under voltage lockout protection functions, and fully eliminates the need for any external components. The measured results show that the motor driver chip has a typical operating point of 2 mT and a typical releasing point of − 2 mT, showing a hysteresis magnetic property of 4 mT. The chip is very robust. It can operate well within a low supply voltage range of 2–4 V and can output a maximum of 300 mA peak current while the ambient temperature ranges from − 40 to 85°C.


    1. 1)
      • 1. Xia, C.L., Li, Z.Q., Shi, T.N.: ‘A control strategy for four-switch three-phase brushless DC motor using single current sensor’, IEEE Trans. Ind. Electron., 2009, 56, pp. 20582066 (doi: 10.1109/TIE.2009.2014307).
    2. 2)
      • 2. Rodriguez, F., Emadi, A.: ‘A novel digital control technique for brushless DC motor drives’, IEEE Trans. Ind. Electron., 2007, 54, pp. 23652373 (doi: 10.1109/TIE.2007.900312).
    3. 3)
      • 3. Chiu, C.L., Chen, Y.T., Liang, Y.L., Liang, R.H.: ‘Optimal driving efficiency design for the single-phase brushless DC fan motor’, IEEE Trans. Magn., 2010, 46, pp. 11231130 (doi: 10.1109/TMAG.2009.2035051).
    4. 4)
      • 4. Alaeinovin, P., Jatskevich, J.: ‘Hall-sensor signals filtering for improved operation of brushless DC motors’. IEEE Int. Symp. on Industrial Electronics, June 2011, pp. 2730.
    5. 5)
      • 5. Gian, S.R.: ‘Monolithic integrated Hall devices in silicon circuits’, Microelectron. J., 1981, 12, pp. 2429 (doi: 10.1016/S0026-2692(81)80360-6).
    6. 6)
      • 6. Kanda, Y., Migitaka, M., Yamamoto, H., Morozumi, H., Okabe, T., Okazaki, S.: ‘Silicon Hall-effect power IC's for brushless motors’, IEEE Trans. Electron Devices, 1982, 29, pp. 151154 (doi: 10.1109/T-ED.1982.20673).
    7. 7)
      • 7. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New fully integrated 3-D silicon Hall sensor for precise angular-position measurements’, Sens. Actuators A, 1998, 67, pp. 7276 (doi: 10.1016/S0924-4247(97)01750-0).
    8. 8)
      • 8. Burger, F., Besse, P.-A., Popovic, R.S.: ‘New single chip Hall sensors for three phases brushless motor control’, Sens. Actuators A, 2000, 81, pp. 320323 (doi: 10.1016/S0924-4247(99)00101-6).
    9. 9)
      • 9. Bellekom, S.: ‘CMOS versus bipolar Hall plates regarding offset correction’, Sens. Actuators A, 1999, 76, pp. 178182 (doi: 10.1016/S0924-4247(99)00007-2).
    10. 10)
      • 10. Popovic, R.S., Randjelovic, Z., Manic, D.: ‘Integrated Hall-effect magnetic sensors’, Sens. Actuators A, 2001, 91, pp. 4650 (doi: 10.1016/S0924-4247(01)00478-2).
    11. 11)
      • 11. Randjelovic, Z.B., Kayal, M., Popovic, R., Blanchard, H.: ‘High sensitive Hall magnetic sensor microsystem in CMOS technology’, IEEE J. Solid-State Circuits, 2002, 37, pp. 151158 (doi: 10.1109/4.982421).
    12. 12)
      • 12. Blanchard, H., Montmollin, F. De., Hubin, J., Popovic, R.S.: ‘Highly sensitive Hall sensor in CMOS technology’, Sens. Actuators A, 2000, 82, pp. 144148 (doi: 10.1016/S0924-4247(99)00329-5).
    13. 13)
      • 13. Xu, Y., Pan, H.B.: ‘An improved equivalent simulation model for CMOS integrated hall plates’, Sensors, 2011, 11, pp. 62846296 (doi: 10.3390/s110606284).
    14. 14)
      • 14. van der Meer, J.C., Riedijk, F.R., van Kampen, E., Makinwa, K.A.A., Huijsing, J.H.: ‘A fully integrated CMOS Hall sensor with a 3.65 μT 3σ offset for compass applications’. IEEE Int. Solid-State Circuits Conf., February 2005, pp. 246247.
    15. 15)
      • 15. Enz, C.C., Temes, G.C.: ‘Circuit techniques for reducing the effects of op-amp imperfections: autozeroing correlated double sampling, and chopper stabilization’, Proc. IEEE, 1996, 84, pp. 15841614 (doi: 10.1109/5.542410).
    16. 16)
      • 16. Bilotti, A., Monreal, G.: ‘Chopper-stabilized amplifiers with a track-and-hold signal demodulator’, IEEE Trans. Circuits Syst. I, 1999, 46, pp. 490495 (doi: 10.1109/81.754850).
    17. 17)
      • 17. Bakker, A., Thiele, K., Huijsing, J.: ‘A CMOS nested-chopper instrumental amplifier with 100-nV offset’, IEEE J. Solid-State Circuits, 2000, 35, pp. 18771883 (doi: 10.1109/4.890300).
    18. 18)
      • 18. Bilotti, A., Monreal, G., Vig, R.: ‘Monolithic magnetic Hall sensor using dynamic quadrature offset cancellation’, IEEE J. Solid-State Circuits, 1997, 32, pp. 829835 (doi: 10.1109/4.585275).
    19. 19)
      • 19. Hu, Y., Yang, W.R.: ‘CMOS Hall sensor using dynamic quadrature offset cancellation’. Proc. 8th Int. Conf. on Solid-State and Integrated Circuit Technology, October 2006, pp. 284286.
    20. 20)
      • 20. Ouffoue, C., Frick, V., Kern, C., Hébrard, L.: ‘New fully differential instrumental chain for Hall sensor signal conditioning integrated in standard 0.35 μm CMOS process’. Proc. Joint IEEE North-East Workshop on Circuits and Systems and TAISA Conf., June 2009, pp. 14.

Related content

This is a required field
Please enter a valid email address