http://iet.metastore.ingenta.com
1887

Analytical modelling of the current (I)–voltage (V) characteristics of sub-micron gate-length ion-implanted GaAs MESFETs under dark and illuminated conditions

Analytical modelling of the current (I)–voltage (V) characteristics of sub-micron gate-length ion-implanted GaAs MESFETs under dark and illuminated conditions

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

An analytical model for current (I)–voltage (V) characteristics of a short-channel ion-implanted GaAs MESFET has been presented for dark and illuminated conditions. For the sake of simplicity, the non-analytic (i.e. non-integral) Gaussian doping function commonly considered for the channel doping of an ion-implanted GaAs metal semiconductor field effect transistor (MESFET) has been replaced by an analytic Gaussian-like doping profile in the vertical direction. The device uses an indium–tin oxide-based Schottky gate through which an optical radiation of 0.87 μm wavelength is coupled from an external source into the device to modulate the IV characteristics of the short-gate length GaAs MESFET. The coupled light generates electron–hole pairs in the active channel region below the gate and develops a photovoltage across the Schottky gate–channel junction and modulates the device characteristics. This study also includes the modelling of this photovoltaic effect by taking the short-gate length effects into consideration. The developed model includes the effects of doping profile and device parameters on the drain current of the short-channel ion-implanted GaAs MESFETs under dark and illuminated conditions of operations. The accuracy of the proposed model is extensively verified by comparing the theoretically predicted results with numerical simulation data obtained by using the commercially available ATLASTM device simulation software.

References

    1. 1)
      • 1. Rodriguez-Tellez, J., Mezher, K.A., Ali, N.T., et al: ‘Optically controlled 2.4 GHz MMIC amplifier’. Proc. Tenth IEEE ICECS, 2003, Vol. 3, pp. 970973.
    2. 2)
      • 2. Zamanillo, J.M., Portilla, J., Navarro, C., Pérez-Vega, C.: ‘Optoelectronic control of a MMIC VCO at Ku band’. Proc. Fifth WSEAS Int. Conf. Electronics, Hardware, Wireless and Optical Communications, 2006, pp. 138141.
    3. 3)
      • 3. Paolella, A., Herczfeld, P.R.: ‘Optical control of a GaAs MMIC transmit/receive module’. IEEE MTT-S Dig. Int. Microwave Symp., 1988, Vol. 2, pp. 959962.
    4. 4)
      • 4. Salles, A.A.A.: ‘Optical control of GaAs MESFET's’, IEEE Trans. Microw. Theory Tech., 1983, 31, pp. 812820 (doi: 10.1109/TMTT.1983.1131611).
    5. 5)
      • 5. Jit, S., Pal, B.B.: ‘A new optoelectronic integrated device for light-amplifying optical switch (LAOS)’, IEEE Trans. Electron Devices, 2001, 48, pp. 27322739 (doi: 10.1109/16.974697).
    6. 6)
      • 6. Pal, B.B., Chattopadhyay, S.N.: ‘GaAs OPFET characteristics considering the effect of gate depletion with modulation due to incident radiation’, IEEE Trans. Electron Devices, 1992, 39, pp. 10211027 (doi: 10.1109/16.129077).
    7. 7)
      • 7. Statz, H., Newman, P., Smith, I.W., Pucel, R.A., Haus, H.A.: ‘GaAs FET device and circuit simulation in SPICE’, IEEE Trans. Electron Devices, 1987, 34, pp. 160169 (doi: 10.1109/T-ED.1987.22902).
    8. 8)
      • 8. Singh, V.K., Pal, B.B.: ‘Effect of optical radiation and surface recombination on the RF switching parameters of a GaAs MESFET’, IEE Proc. Optoelectron., 1990, 137, pp. 124128 (doi: 10.1049/ip-j.1990.0022).
    9. 9)
      • 9. Chakrabarti, P., Gupta, A., Khan, N.A.: ‘An analytical model of GaAs OPFET’, Solid State Electron., 1996, 39, pp. 14811490 (doi: 10.1016/0038-1101(96)00061-5).
    10. 10)
      • 10. Chakrabarti, P., Shrestha, N.L., Srivastava, S., Khemka, V.: ‘An improved model of ion-implanted GaAs OPFET’, IEEE Trans. Electron Devices, 1992, 39, pp. 20502059 (doi: 10.1109/16.155877).
    11. 11)
      • 11. Kawasaki, S., Shiomi, H., Matsugatani, K.: ‘A novel FET model including an illumination-intensity parameter for simulation of optically controlled millimeter-wave oscillators’, IEEE Trans. Microw Theory Tech., 1998, 46, pp. 820828 (doi: 10.1109/22.681206).
    12. 12)
      • 12. Enoki, T., Sugitani, S., Yamane, Y.: ‘Characteristics including electron velocity overshoot for 0.1-micrometre-gate-length GaAs SAINT MESFET's’, IEEE Trans. Electron Devices, 1990, 37, pp. 935941 (doi: 10.1109/16.52426).
    13. 13)
      • 13. Chin, S.P., Wu, C.Y.: ‘A new two-dimensional model for the potential distribution of short gate length MESFETs and its application’, IEEE Trans. Electron Devices, 1992, 39, pp. 19281937 (doi: 10.1109/16.144686).
    14. 14)
      • 14. Chang, C.S., Day, D.Y.S., Chan, S.: ‘An analytical two-dimensional simulation for the GaAs MESFET drain-induced barrier lowering: a short-channel effect’, IEEE Trans. Electron Devices, 1990, 37, pp. 11821186 (doi: 10.1109/16.108177).
    15. 15)
      • 15. Adams, J.A., Thayne, I.G., Wilkinson, C.D., et al: ‘Short channel effects and drain induced barrier lowering in nanometer scale GaAs MESFETs’, IEEE Trans. Electron Devices, 1993, 40, pp. 10471052 (doi: 10.1109/16.214727).
    16. 16)
      • 16. Bose, S., Gupta, M., Gupta, R.S.: ‘IdVd characteristics of optically biased short channel GaAs MESFET’, Microelectron. J., 2001, 32, pp. 241247 (doi: 10.1016/S0026-2692(00)00120-8).
    17. 17)
      • 17. Memon, N.M., Ahmed, M.M., Rehman, F.: ‘Comparison of non-linear IV models for submicron GaAs MESFETs characteristics’. Proc. Eighth Int. Conf. Solid-State and Integrated Circuit Technology, October 2006, pp. 896898.
    18. 18)
      • 18. Curtice, W.R.: ‘A MESFET model for use in the design of GaAs integrated circuits’, IEEE Trans. Microw. Theory Tech., 1980, 28, pp. 448456 (doi: 10.1109/TMTT.1980.1130099).
    19. 19)
      • 19. Kacprzak, T., Materka, A.: ‘Compact DC model of GaAs FETs for large-signal computer calculation’, IEEE J. Solid-State Circuits, 1983, 18, pp. 211213 (doi: 10.1109/JSSC.1983.1051924).
    20. 20)
      • 20. McCamant, A.J., McCormark, G.D., Smith, D.H.: ‘An improved GaAs MESFET model for SPICE’, IEEE Trans. Microw. Theory Tech., 1990, 38, pp. 822824 (doi: 10.1109/22.130988).
    21. 21)
      • 21. Rodriguez, T.J., England, P.J.: ‘A five-parameter dc GaAs MESFET model for nonlinear circuit design’, Proc. IEEE, 1992, 139, pp. 325332.
    22. 22)
      • 22. Ahmed, M.M., Ahmed, H., Ladbrooke, P.H.: ‘An improved DC model for circuit analysis programs for submicron GaAs MESFETs’, IEEE Trans. Electron Devices, 1997, 44, pp. 360363 (doi: 10.1109/16.556144).
    23. 23)
      • 23. McNallay, P.J., Daniels, B.: ‘Compact DC model for submicron GaAs MESFETs including gate-source modulation effects’, Microelectron. J., 2001, 32, pp. 249251 (doi: 10.1016/S0026-2692(00)00103-8).
    24. 24)
      • 24. Islam, M.S., Zaman, M.M.: ‘A seven parameter nonlinear IV characteristics model for sub-µm range GaAs MESFETs’, Solid-State Electron., 2004, 48, pp. 11111117 (doi: 10.1016/j.sse.2004.01.007).
    25. 25)
      • 25. Dobes, J., Pospisil, L.: ‘Enhancing the accuracy of microwave element models by artificial neural networks’, Radio Eng. J., 2004, 13, pp. 712.
    26. 26)
      • 26. Mohammad, S.N., Patil, M.B., Chyi, J.I., Gao, G.B., Morkoc, H.: ‘Analytical model for IV characteristics of ion-implanted MESFET's with heavily doped channel’, IEEE Trans. Electron Devices, 1990, 37, pp. 1120 (doi: 10.1109/16.43795).
    27. 27)
      • 27. Liu, C.H., Wu, L.W., Chang, S.J., Chen, J.F., Liaw, U.H., Chen, S.C.: ‘Ion-implantation technology for improved GaAs MESFETs performance’, J. Mater. Sci., Mater. Electron., 2004, 15, pp. 9193 (doi: 10.1023/B:JMSE.0000005382.12404.eb).
    28. 28)
      • 28. Tripathi, S., Jit, S.: ‘A two-dimensional analytical model for the gate–source and gate–drain capacitances of ion-implanted short-channel GaAs metal semiconductor field effect transistor under dark and illuminated conditions’, J. Appl. Phys., 2011, 109, 053102 (doi: 10.1063/1.3549257).
    29. 29)
      • 29. Dasgupta, A., Lahiri, S.K.: ‘A novel analytical threshold voltage model of MOSFETs with implanted channels’, Int. J. Electron., 1986, 61, pp. 655669 (doi: 10.1080/00207218608920909).
    30. 30)
      • 30. Chin, S.P., Wu, C.Y.: ‘A new IV model for short gate length MESFETs’, IEEE Trans. Electron Devices, 1993, 40, pp. 712720 (doi: 10.1109/16.202782).
    31. 31)
      • 31. ATLAS: Silvaco International 2008.
    32. 32)
      • 32. Bashar, S.A.: ‘Study of indium tin oxide (ITO) for novel optoelectronic devices’. PhD thesis, University of London, 1998.
    33. 33)
      • 33. Tajima, M.: ‘Characterization of nonuniformity in semi-insulating LEC GaAs by photoluminescence spectroscopy’, Jpn. J. Appl. Phys., 1982, 21, pp. L227L229 (doi: 10.1143/JJAP.21.L227).
    34. 34)
      • 34. Dasgupta, A., Lahiri, S.K.: ‘A two-dimensional analytical model of threshold voltages of short-channel MOSFETs with Gaussian-doped channels’, IEEE Trans. Electron Device, 1988, 35, pp. 390392 (doi: 10.1109/16.2468).
    35. 35)
      • 35. Sze, S.M.: ‘Physics of semiconductor devices’ (Wiley, New York, 1981, 2nd edn.).
    36. 36)
      • 36. Seeds, A.J., De Salles, A.A.A.: ‘Optical control of microwave semiconductor devices’, IEEE Trans. Microw. Theory Tech., 1990, 38, pp. 577585 (doi: 10.1109/22.54926).
    37. 37)
      • 37. Simons, R.N.: ‘Microwave performance of an optically controlled AlGaAs/GaAs high electron mobility transistor and GaAs MESFET’, IEEE Trans. Microw. Theory Tech., 1987, 35, pp. 14441455 (doi: 10.1109/TMTT.1987.1133873).
    38. 38)
      • 38. Chen, T.H., Shur, M.S.: ‘Analytical models for ion-implanted GaAs FETs’, IEEE Trans. Electron Devices, 1985, 32, pp. 1828 (doi: 10.1109/T-ED.1985.21903).
    39. 39)
      • 39. Yamasaki, K., Hirayama, M.: ‘Determination of effective saturation velocity in n+self-aligned GaAs MESFETs with submicrometer gate lengths’, IEEE Trans. Electron Devices, 1986, 33, pp. 16521658 (doi: 10.1109/T-ED.1986.22724).
    40. 40)
      • 40. Chhokra, S.A., Gupta, R.S.: ‘Analytical model for CV characteristics and transient response of submicrometer non-self-aligned GaAs MESFET’, Solid-State Electron., 1998, 42, pp. 19171924 (doi: 10.1016/S0038-1101(98)00172-5).
    41. 41)
      • 41. Tripathi, S., Jit, S.: ‘A two-dimensional (2D) analytical model for the potential distribution and threshold voltage of short-channel ion-implanted GaAs MESFETs under dark and illuminated conditions’, IEEK J. Semicond. Technol. Sci., 2011, 11, pp. 4050 (doi: 10.5573/JSTS.2011.11.1.040).
    42. 42)
      • 42. Shur, M.S.: ‘GaAs devices and circuits’ (Plenum Press, New York, 1986).
    43. 43)
      • 43. Khalid, A.H., Rezazadeh, A.A.: ‘Fabrication and characterisation of transparent-gate field effect transistors using indium tin oxide’, IEE Proc. Optoelectron., 1996, 143, pp. 711 (doi: 10.1049/ip-opt:19960083).
    44. 44)
      • 44. Bose, S., Adarsh, , Gupta, R., Gupta, M., Gupta, R.S.: ‘Model for optically biased short-channel GaAs MESFET’, Microwave Opt. Technol. Lett., 2002, 32, pp. 138142 (doi: 10.1002/mop.10113).
    45. 45)
      • 45. Parker, I.D.: ‘Carrier tunneling and device characteristics in polymer light-emitting diodes’, J. Appl. Phys., 1994, 75, pp. 16561666 (doi: 10.1063/1.356350).
    46. 46)
      • 46. Szczyrbowski, J.A., Dietrich, A., Hoffmann, H.: ‘Optical and electrical properties of r.f. sputtered indium-tin oxide films’, Phys. Status Solidi (a), 1983, 78, pp. 243252 (doi: 10.1002/pssa.2210780129).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0145
Loading

Related content

content/journals/10.1049/iet-cds.2012.0145
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address