© The Institution of Engineering and Technology
This study describes a method to easily predict the write yield of a static random access memory (SRAM) memory cell. The differential coefficient of the combined word line margin (CWLM) for the threshold voltage (V_{th}) is analysed using the simple Schockley's transistor model. The analysis shows the good linearity comes from keeping the access transistor operating in the saturation mode for a wide range of V_{th}'s. The Monte Carlo simulation demonstrates that the CWLM obeys the normal distribution. The mean and the variance of the CWLM are almost constant for sample numbers ranging from 100 to 100 000. The estimated write failure probability are almost uniform within a factor of 1.7 for the number of samples more than 300, which allows us to evaluate SRAM with a small number of measurements. The predicted distribution using the differential coefficient calculated by the SPICE simulation also matches the Monte Carlo results. The estimated write failure probability agrees with the Monte Carlo results within a factor of 2.0, which is acceptable for SRAM redundancy circuit design. Finally, the write yield is related to the error rate. Thus, the write yield is easily predicted from a small number of measured samples or the differential coefficients of the CWLM on the V_{th}'s calculated by the SPICE simulation.
References


1)

Wang, J., Nalam, S., Calhoun, B.H.: `Analyzing static and dynamic write margin for nanometer SRAMs', ISLPED, August 2008, p. 129–134.

2)

Takeda, K., Ikeda, H., Hagihara, Y., Nomura, M., Kobatake, H.: `Redefinition of write margin for nextgeneration SRAM and writemargin monitoring circuit', IEEE ISSCC, Digest Technical Papers, February 2006, p. 630–631.

3)

V. Gupta ,
M. Anis
.
Atatistical design of the 6T SRAM bit cell.
IEEE Trans. Circuits Syst.I, Regular Papers
,
1 ,
93 
104

4)

E. Grossar ,
M. Stucchi ,
K. Maex ,
W. Dehaene
.
Read stability and writeability analysis of SRAM cells for nanometer technologies.
IEEE J. SolidState Circuits
,
11 ,
2577 
2588

5)

Z. Guo ,
A. Carlson ,
L.T. Pang ,
K.T. Duong ,
T.J.K. Liu ,
B. Nikolic
.
Largescale SRAM variability characterization in 45 nm CMOS.
IEEE J. SolidState Circuits
,
11 ,
2174 
3192

6)

Gierczynski, N., Borot, B., Planes, N., Brut, H.: `A new combined methodology for writemargin extraction of advanced SRAM', IEEE Int. Conf. on Microelectronic Test Structure, 2007, p. 97–100.

7)

Stackhouse, B., Cherkauer, B., Gowan, M., Gronowski, P., Lyles, C.: `65 nm 2Billiontransistor quadcore itanium processor', ISSCC, Digest Technical Papers, 2008, p. 92–93.

8)

P.A. Stolk ,
F.P. Widdershoven ,
D.B.M. Klaassen
.
Modeling statistical dopant fluctuations in MOS transistors.
IEEE Trans. Electron. Devices
,
9 ,
1960 
1971

9)

‘45nm PTM HP model: V2.1,’ Predictive Technology Model, http://www.eas.asu.edu/~ptm/, accsessed August 2011.

10)

K. Zhang
.
A 3GHz 70Mb SRAM in 65nm CMOS technology with integrated columnbased dynamic power supply.
IEEE J. SolidState Circuits
,
146 
151

11)

Wann, C., Wong, R., Frank, D.: `SRAM cell design for stability methodology,’ VLSI Technology (VLSITSATech)', IEEE VLSITSA Int. Symp., 2005, p. 21–22.

12)

Makino, H., Kusumoto, T., Nakata, S.: `Simultaneous enlargement of SRAM read/write noise margin by controlling virtual ground lines', Proc. IEEE Int. NEWCAS Conf., June 2010, p. 73–76.

13)

Yamaoka, M., Osada, K., Tsuchiya, R., Horiuchi, M., Kimura, S., Kawahara, T.: `Low power SRAM menu for SOC application using YinYangfeedback memory cell technology', Symp. on VLSI Circuits, Digest Technical Papers, 2004, p. 288–291.

14)

Tsunomura, T., Nishida, A., Yano, F.: `Analyses of 5s fluctuation in 65nmMOSFETs using takeuchi plot', Symp. on VLSI Technology, Digest Technical Papers, 2008, p. 156–157.

15)

Morita, Y., Fujiwara, H., Noguchi, H.: `A ', Symp. on VLSI Circuits, June 2006, p. 13–14.

16)

M.J.M. Pelgrom ,
C.J. Duinmaijer ,
A.P.G. Welbers
.
Matching properties of MOS transistors.
IEEE J. SolidState Circuits
,
5 ,
1433 
1440

17)

H. Makino ,
S. Nakata ,
H. Suzuki ,
S. Mutoh
.
Reexamination of SRAM cell write margin definitions in view of predicting distribution.
IEEE Trans. Circuits and Syst.II, Express Briefs
,
4 ,
230 
234

18)

Bhavnagarwala, A., Kosonocky, S., Radens, C.: `Fluctuation limits & scaling opportunities for CMOS SRAM cells', IEEE IEDM Digest Technical Papers, November 2005, p. 659–662.

19)

Hirabayashi, O., Kawasumi, A., Suzuki, A.: `A processvariationtolerant dualpowersupply SRAM with 0.179 um2 cell in 40 nm CMOS using level programmable wordline driver', ISSCC Digest Technical Papers, February 2009, p. 458–459.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcds.2012.0090
Related content
content/journals/10.1049/ietcds.2012.0090
pub_keyword,iet_inspecKeyword,pub_concept
6
6