© The Institution of Engineering and Technology
In this study, the authors explore sequential and parallel processing architectures, utilising a custom ultra-low-power (ULP) processing core, to extend the lifetime of health monitoring systems, where slow biosignal events and highly parallel computations exist. To this end, a single- and a multi-core architecture are proposed and compared. The single-core architecture is composed of one ULP processing core, an instruction memory (IM) and a data memory (DM), while the multi-core architecture consists of several ULP processing cores, individual IMs for each core, a shared DM and an interconnection crossbar between the cores and the DM. These architectures are compared with respect to power/performance trade-offs for different target workloads of online biomedical signal analysis, while exploiting near threshold computing. The results show that with respect to the single-core architecture, the multi-core solution consumes 62% less power for high computation requirements (167 MOps/s), while consuming 46% more power for extremely low computation needs when the power consumption is dominated by leakage. Additionally, the authors show that the proposed ULP processing core, using a simplified instruction set architecture (ISA), achieves energy savings of 54% compared to a reference microcontroller ISA (PIC24).
References
-
-
1)
-
World Health Organization: ‘Cardiovascular diseases’, available at http://www.who.int/cardiovascular_diseases, accessed May 2012.
-
2)
-
G.Z. Yang
.
(2006)
Body sensor networks.
-
3)
-
H. Mamaghanian ,
N. Khaled ,
D. Atienza ,
P. Vandergheynst
.
Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes.
IEEE Trans. Biomed. Eng.
,
9 ,
2456 -
2466
-
4)
-
M.A. Hanson
.
Body area sensor networks: challenges and opportunities.
IEEE Comput.
,
1 ,
58 -
65
-
5)
-
H.C. Powell ,
A.T. Barth ,
J. Lach
.
Dynamic voltage-frequency scaling in body area sensor networks using COTS components.
BodyNets
,
1 -
8
-
6)
-
S. Hanson ,
B. Zhai ,
M. Seok
.
Exploring variability and performance in a sub-200 mV processor.
IEEE J. Solid-State Circuits’
,
4 ,
881 -
891
-
7)
-
Zhai, B., Nazhandali, L., Olson, J.: `A 2.60 pJ/Inst subthreshold sensor processor for optimal energy efficiency', Symp. on VLSI Circuits Digest of Technical. Papers, 2006, p. 154–155.
-
8)
-
Wang, A., Chandrakasan, A.: `A 180 mV FFT processor using sub- threshold circuit techniques', IEEE Int. Solid-State Circuits Conf. on Digest of Technical Papers, 2004, p. 292–529.
-
9)
-
R.G. Dreslinski ,
M. Wieckowski ,
D. Blaauw ,
D. Sylvester ,
T. Mudge
.
Near-threshold computing: reclaiming moore's law through energy efficient integrated circuits.
IEEE Proc.
,
2 ,
253 -
266
-
10)
-
Chen, G., Fojtik, M., Kim, D.: `Millimeter-scale nearly perpetual sensor system with stacked battery and solar cells', Solid-State Circuits Conf. on Digest of Technical Papers, 2010, p. 288–289.
-
11)
-
S. Hanson ,
M. Seok ,
Y.-S. Lin
.
A low-voltage processor for sensing applications with picowatt standby mode.
IEEE J. Solid-State Circuits
,
4 ,
1145 -
1155
-
12)
-
R.G. Dreslinski ,
B. Zhai ,
T. Mudge ,
D. Blaauw ,
D. Sylvester
.
An energy efficient parallel architecture using near threshold operation.
PACT
,
175 -
188
-
13)
-
Y. Pu ,
J. Pineda de Gyvez ,
H. Corporaal ,
Y. Ha
.
An ultra-low-energy multi-standard JPEG co-processor in 65 nm cmos with sub/near threshold supply voltage.
IEEE J. Solid-State Circuits
,
3 ,
668 -
680
-
14)
-
Microchip Technology: available at www.microchip.com/en_us/family/16bit/architecture/PIC24H.html, accessed May 2012.
-
15)
-
Jocke, S.C., Bolus, J.F., Wooters, S.N.: `A 2.6-mW Sub-threshold Mixed-signal ECG SoC', Symp. on VLSI Circuits, 2009, p. 60–61.
-
16)
-
F. Rincon ,
J. Recas ,
N. Khaled ,
D. Atienza
.
Development and evaluation of multilead wavelet-based ECG delineation algorithms for embedded wireless sensor nodes.
IEEE Trans. Inf. Technol. Biomed.
,
6 ,
854 -
863
-
17)
-
Y. Sun ,
K. Chan ,
S.M. Krishnan
.
ECG signal conditioning by morphological filtering.
Comput. Biol. Med.’
,
6 ,
465 -
479
-
18)
-
A. Rahimi ,
I. Loi ,
M.R. Kakoee ,
L. Benini
.
A fully-synthesizable single-cycle interconnection network for Shared-L1 processor clusters.
DATE
,
1 -
6
-
19)
-
Microchip Technology ‘Development environment and compilers’, available at http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGEnodeId=1406dDocName=en019469part=SW007002, accessed May 2012.
-
20)
-
Synopsys: available at http://www.synopsys.com/Systems/BlockDesign/ processorDev, accessed May 2012.
-
21)
-
J. Kwong ,
A.P. Chandrakasan
.
An energy-efficient biomedical signal processing platform.
IEEE J. Solid-State Circuits
,
7 ,
1742 -
1753
-
22)
-
N. Ickes ,
Y. Sinangil ,
F. Pappalardo ,
E. Guidetti ,
A.P. Chandrakasan
.
A 10 pJ/cycle ultra-low-voltage 32-bit microprocessor system-on-chip.
ESSCIRC
,
159 -
162
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2012.0011
Related content
content/journals/10.1049/iet-cds.2012.0011
pub_keyword,iet_inspecKeyword,pub_concept
6
6