Analytical device models for disordered organic Schottky diodes and thin-film transistors for circuit simulations

Access Full Text

Analytical device models for disordered organic Schottky diodes and thin-film transistors for circuit simulations

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Analytical device models for disordered organic Schottky diodes and thin-film transistors are presented. The models are developed taking into consideration the strong dependency of the charge mobility on carrier concentration. The drain current expressions are consequently developed in terms of the essential device parameters and applied voltages, to a power exponent of the characteristic temperature associated with the disordered nature of the semiconductor. Upon validation, better agreement of the experimental data is achieved with the disordered model rather than the conventional crystalline equation. Interestingly, under certain conditions, the disordered model reverts back to the conventional model, suggesting the latter to be a special case. Finally, to facilitate the circuit development, alternative design parameters to the mobility term are proposed.

Inspec keywords: semiconductor process modelling; carrier mobility; circuit simulation; thin film transistors; Schottky diodes

Other keywords: thin-film transistors; analytical device models; disordered organic Schottky diodes; carrier concentration; conventional crystalline equation; circuit simulations; design parameters; charge mobility; drain current expressions; device parameters; circuit development; semiconductor disordered nature

Subjects: Electronic engineering computing; Junction and barrier diodes; Other field effect devices

References

    1. 1)
      • E. Cantatore , T.C.T. Geuns , G.H. Gelinck . A 13.56 MHz RFID system based on organic transponder. IEEE J. Solid State Circuits , 1
    2. 2)
      • S.M. Sze . (1981) Physics of semiconductor devices.
    3. 3)
      • J. Shinar , R. Shinar . Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview. J. Appl. Phys. D, Appl. Phys. , 13
    4. 4)
      • N.F. Mott , R.W. Gurney . (1940) Electronic processes in ionic crystals.
    5. 5)
      • W. Meyer , H. Neldel . Über die Beziehungen zwischen der Energiekonstanten & under der Mengenkonstanten α in der Leitwerts-Temperaturformel bei oxydischen Halbleitern,. Z. Tech. Phys.
    6. 6)
      • M.C. Tanese , F. Marinelli , D. Angione , L. Torsi . Overview of recent development in organic thin-film transistor sensor technology. Nuovo Cimento Della Societa Italiana di Fisica C, Geophys. Space Phys. , 4
    7. 7)
      • V.I. Arkhipov , P.P. Heremans , E.V. Emelianova , G.J. Adriaenssens , H. Bassler . Weak-field carrier hopping in disordered organic semiconductors: the effect of deep trapsand partly filled density of states distribution. J. Phys.: Condens. Matter , 42
    8. 8)
      • N. Sedghi , D. Donaghy , M. Raja , S. Badriya , S.J. Higgins , W. Eccleston . Experimental observation of the density of localised trapping levels in organic semiconductors. J. Non-Cryst. Solids
    9. 9)
      • K. Hecker , W. Clemens , D. Lupo , S. Breitung . White paper – OE-A roadmap for organic and printed electronics.
    10. 10)
      • W.L. Kalb , S. Haas , C. Krellner , T. Mathis , B. Batlogg . Trap density of states in small molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys. Rev. B , 15
    11. 11)
      • K. Myny , S. Winckel Van , S. Steudel . An inductively-coupled 64b organic RFID tag operating at 13.56 MHz with a data rate of 787b/s. IEEE ISSCC Digital Technical Papers
    12. 12)
      • M. Raja , G.C.R. Lloyd , N. Sedghi , W. Eccleston , R. Lucrezia , S.J. Higgins . Conduction processes in conjugated, highly regio-regular, high moleculr mass, poly(3-hexylthiophene) thin-film transistors. J. Appl. Phys. , 3
    13. 13)
      • A. Miller , E. Abraham . Impurity conduction at low concentrations. Phys. Rev. , 3
    14. 14)
      • A.R. Brown , D.M. Leeuw de , E.E. Havinga , A. Pomp . A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductor. Synth. Met. , 1
    15. 15)
      • Z. Ahmad , M. Sayyad . Extraction of electronic parameters of Schottky diode based on organic semiconductor methyl-red. Physica E , 4 , 631 - 634
    16. 16)
      • Raja, M.: `Metal-oxide-conjugated polymer interface properties for application in polymer electronics', 2004, PhD, .
    17. 17)
      • R. Hamilton , J. Smith , S. Ogier . High performance polymer small molecule blend organic transistors. Adv. Mater.
    18. 18)
      • W.D. Gill . Drift mobilities in amorphous charge-transfer complexes trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. , 12
    19. 19)
      • C. Kim , P.Y. Huang , J.W. Jhuang . Novel soluble pentacene and anthradithiophene for organic thin-film transistors. Org. Electron. , 8
    20. 20)
      • Raja, M., Donaghy, D., Myers, R., Eccleston, W.: `Modeling of polycrstalline organic thin-film transistors and Schottky diode for the design of simple functional blocks', MRS Proc., 2011, 1359, p. 11-1359-NN02-08.
    21. 21)
      • M.C.J.M. Vissenberg , M. Matters . Theory of the field-effect mobility in amorphous organic transistors. Phys. Rev. B
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2011.0199
Loading

Related content

content/journals/10.1049/iet-cds.2011.0199
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading