Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip

Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors review their recent studies on various nanophotonic devices including all-optical switches, optical memories, electro-optic modulators, photo-detectors and lasers, all of which are based on photonic crystal (PhC) nanocavities. The strong light confinement achieved in PhC nanocavities has enabled these devices with ultrasmall footprint and ultralow power/energy consumption. These characteristics are ideally suited for constructing dense photonic network on chip, which will overcome the limitation of future CMOS chips in terms of high-speed operation with less energy consumption and heat generation.

References

    1. 1)
    2. 2)
    3. 3)
    4. 4)
    5. 5)
    6. 6)
      • J.D. Joannopoulos , R.D. Mead , J.N. Winn . (1995) Photonic crystals, molding the flow of light.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
      • Matsuo, S., Shinya, A., Kakitsuka, T.: `Ultra-small InGaAsP/InP buried heterostructure photonic crystal laser', The 22nd Annual Meeting of the IEEE Lasers & Electro-Optics Society, 2009, Belek-Antalya, Turkey.
    11. 11)
    12. 12)
    13. 13)
    14. 14)
    15. 15)
    16. 16)
    17. 17)
    18. 18)
      • SMART 2020: Enabling the low carbon economy in the information age', available at http://www.gesi.org/index.php?article_id=43.
    19. 19)
    20. 20)
    21. 21)
    22. 22)
    23. 23)
    24. 24)
    25. 25)
    26. 26)
    27. 27)
    28. 28)
    29. 29)
    30. 30)
    31. 31)
    32. 32)
      • Tucker, R.S.: `A green internet', Twenty-first Annual Meeting of the IEEE Lasers and Electro-Optics Society, 4–5 2008.
    33. 33)
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
    43. 43)
    44. 44)
    45. 45)
    46. 46)
    47. 47)
    48. 48)
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
      • R.W. Boyd . (1992) Nonlinear optics.
    57. 57)
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
    64. 64)
    65. 65)
    66. 66)
    67. 67)
    68. 68)
    69. 69)
    70. 70)
    71. 71)
      • Magen, N., Kolodny, A., Weiser, U., Shamir, N.: `Interconnect-power dissipation in a microprocessor', Proc. 2004 Int. Workshop System Level Interconnect Prediction, Session Interconnect Anal. SoCs Microprocess., 2004, p. 7–13.
    72. 72)
    73. 73)
    74. 74)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0159
Loading

Related content

content/journals/10.1049/iet-cds.2010.0159
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address