Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip
Low-power nanophotonic devices based on photonic crystals towards dense photonic network on chip
- Author(s): M. Notomi ; A. Shinya ; K. Nozaki ; T. Tanabe ; S. Matsuo ; E. Kuramochi ; T. Sato ; H. Taniyama ; H. Sumikura
- DOI: 10.1049/iet-cds.2010.0159
For access to this article, please select a purchase option:
Buy article PDF
Buy Knowledge Pack
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
Thank you
Your recommendation has been sent to your librarian.
- Author(s): M. Notomi 1 ; A. Shinya 1 ; K. Nozaki 1 ; T. Tanabe 1 ; S. Matsuo 2 ; E. Kuramochi 1 ; T. Sato 2 ; H. Taniyama 1 ; H. Sumikura 1
-
-
View affiliations
-
Affiliations:
1: NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan
2: NTT Photonics Laboratories, NTT Corporation, Atsugi, Japan
-
Affiliations:
1: NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan
- Source:
Volume 5, Issue 2,
March 2011,
p.
84 – 93
DOI: 10.1049/iet-cds.2010.0159 , Print ISSN 1751-858X, Online ISSN 1751-8598
The authors review their recent studies on various nanophotonic devices including all-optical switches, optical memories, electro-optic modulators, photo-detectors and lasers, all of which are based on photonic crystal (PhC) nanocavities. The strong light confinement achieved in PhC nanocavities has enabled these devices with ultrasmall footprint and ultralow power/energy consumption. These characteristics are ideally suited for constructing dense photonic network on chip, which will overcome the limitation of future CMOS chips in terms of high-speed operation with less energy consumption and heat generation.
Inspec keywords: high-speed optical techniques; electro-optical modulation; optical switches; photonic crystals; solid lasers; integrated optoelectronics; nanophotonics; reviews; laser cavity resonators; optical storage; photodetectors
Other keywords:
Subjects: Nanophotonic devices and technology; Integrated optoelectronics; Laser resonators and cavities; Solid lasers; General electrical engineering topics; Reviews and tutorial papers; resource letters; Laser resonators and cavities; Optical beam modulators; Optical switches; Optical storage and retrieval; Optical storage and retrieval; Ultrafast optical techniques; Electro-optical devices; Nanophotonic devices and technology; Photodetectors; Optical switches; Lasing action in other solids
References
-
-
1)
- M. Notomi . Manipulation of light by strongly modulated photonic crystals. Rep. Prog. Phys.
-
2)
- Y. Li , A. Bhattacharyya , C. Thomidis , T.D. Moustakas , R. Paiella . Ultrafast all-optical switching with low saturation energy via intersubband transitions in GaN/AlN quantum-well waveguides. Opt. Express , 26 , 17922 - 17927
-
3)
- K. Nozaki , S. Kita , T. Baba . Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser. Opt. Express , 12 , 7506 - 7514
-
4)
- H. Nakamura , Y. Sugimoto , K. Kanamoto . Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks. Opt. Express , 26 , 6606 - 6614
-
5)
- M. Notomi , T. Tanabe , A. Shinya . Nonlinear and adiabatic control of high-Q photonic crystal nanocavities. Opt. Express , 26 , 17458 - 17481
-
6)
- J.D. Joannopoulos , R.D. Mead , J.N. Winn . (1995) Photonic crystals, molding the flow of light.
-
7)
- D.M. Beggs , T.P. White , L. O'Faolain , T. Krauss . Ultra-compact and low-power optical switch based on silicon photonic crystals. Opt. Lett. , 2 , 147 - 149
-
8)
- M.L. Nielsen , J. Mørk , R. Suzuki , J. Sakaguchi , Y. Ueno . Experimental and theoretical investigation of the impact of ultra-fast carrier dynamics on high speed SOA-based all-optical switches. Opt. Express , 1 , 331 - 347
-
9)
- P.A. Andrekson , H. Sunnerud , S. Oda , T. Nishitani , J. Yang . Ultrafast, atto-Joule switch using fiber-optic parametric amplifier operated in saturation. Opt. Express , 15 , 10956 - 10961
-
10)
- Matsuo, S., Shinya, A., Kakitsuka, T.: `Ultra-small InGaAsP/InP buried heterostructure photonic crystal laser', The 22nd Annual Meeting of the IEEE Lasers & Electro-Optics Society, 2009, Belek-Antalya, Turkey.
-
11)
- M. Waldow , T. Plotzing , M. Gottheil . 25ps all-optical switching in oxygen implanted silicon-on-insulator microring resonator. Opt Express , 11 , 7693 - 7702
-
12)
- A. Shacham , K. Bergman , L.P. Carloni . Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput. , 9 , 1246 - 1260
-
13)
- M. Takenaka . All-optical flip-flop multimode interference bistable laser diode. IEEE Photonics Technol. Lett. , 968 - 970
-
14)
- A. Shinya , S. Mitsugi , E. Kuramochi , M. Notomi . Ultrasmall multi-port channel drop filter in two-dimensional photonic crystal on silicon-on-insulator substrate. Opt. Express , 25 , 12394 - 12400
-
15)
- J.H. Lee , T. Tanemura , Y. Takushima , K. Kikuchi . All-optical 80-gb/s add-drop multiplexer using fiber-based nonlinear optical loop mirror. IEEE Photon. Tech. Lett. , 4 , 840 - 842
-
16)
- C. Husko , A. De Rossi , S. Combrie , Q.V. Tran , F. Raineri , C.W. Wong . Ultrafast all-optical modulation in GaAs photonic crystal cavities. Appl. Phys. Lett. , 2
-
17)
- M.W. Geis , S.J. Spector , M.E. Grein , J.U. Yoon , D.M. Lennon , T.M. Lyszczarz . Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW(-1) response. Opt. Express , 7 , 5193 - 5204
-
18)
- SMART 2020: Enabling the low carbon economy in the information age', available at http://www.gesi.org/index.php?article_id=43.
-
19)
- H.C. Lim , T. Sakamoto , K. Kikuchi . Polarization-independent optical demultiplexing by conventional nonlinear optical loop mirror in a polarization-diversity loop configuration. IEEE Photon. Tech. Lett. , 12 , 1704 - 1706
-
20)
- T. Tanabe , M. Notomi , E. Kuramochi , A. Shinya , H. Taniyama . Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity. Nature Photonics , 1 , 49 - 52
-
21)
- G.W. Cong , R. Akimoto , K. Akita , T. Hasama , H. Ishikawa . Low-saturation-energy-driven ultrafast all-optical switching operation in (CdS/ZnSe)/BeTe intersubband transition. Opt. Express , 19 , 12123 - 12130
-
22)
- M.D. Pelusi , V.G. Ta'eed , M.R.E. Lamont . Ultra-high nonlinear As2S3 planar waveguide for 160-Gb/s optical time-division demultiplexing by four-wave mixing. IEEE Photon. Tech. Lett. , 1496 - 1498
-
23)
- T.A. Ibrahim , W. Cao , Y. Kim . All-optical switching in a laterally coupled microring resonator by carrier injection. IEEE Photon. Tech. Lett. , 1 , 36 - 38
-
24)
- S. Matsuo , K. Tateno , T. Nakahara , H. Tsuda , T. Kurokawa . Use of polyimide bonding for hybrid integration of a vertical cavity surface emitting laser on a silicon substrate. Electron. Lett. , 13 , 1148 - 1149
-
25)
- T. Tadokoro , T. Yamanaka , F. Kano , H. Oohashi , Y. Kondo , K. Kishi . Operation of a 25-Gb/s direct modulation ridge waveguide MQW-DFB laser up to 85°C. IEEE Photonics Technol. Lett. , 1154 - 1156
-
26)
- E. Yablonovitch . Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett.
-
27)
- H.K. Tsang , C.S. Wong , T.K. Liang , I.E. Day , S.W. Roberts , A. Harpin , J. Drake , M. Asghari . Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 µm wavelength. Appl. Phys. Lett. , 416 - 418
-
28)
- K. Otsubo , M. Matsuda , K. Takada . 1.3-mu m AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J. Sel. Top. Quant. Electron. , 3 , 687 - 693
-
29)
- K.J. Vahala . Optical microcavities. Nature , 6950 , 839 - 846
-
30)
- T. Yamamoto , E. Yoshida , M. Nakazawa . Ultrafast nonlinear optical loop mirror for demultiplexing 640 Gbit/s TDM signals. Electron. Lett. , 10 , 1013 - 1014
-
31)
- H. Wada , T. Takamori , T. Kamijoh . Room-temperature photo-pumped operation of 1.58-micon vertical-cavity lasers fabricated on Si substrates using wafer bonding. IEEE Photonics Technol. Lett. , 11 , 1426 - 1428
-
32)
- Tucker, R.S.: `A green internet', Twenty-first Annual Meeting of the IEEE Lasers and Electro-Optics Society, 4–5 2008.
-
33)
- T. Simoyama , S. Sekiguchi , H. Yoshida , J.I. Kasai , T. Mozume , H. Ishikawa . Absorption dynamics in all-optical switch based on intersubband transition in InGaAs-AlAs-AlAsSb coupled quantum wells. IEEE Photon. Tech. Lett. , 604 - 606
-
34)
- C. Koos , P. Vorreau , T. Vallaitis . All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics , 4 , 216 - 219
-
35)
- H. Ju , S. Zhang , D. Lenstra . SOA-based all-optical switch with subpicosecond full recovery. Opt. Express , 3 , 942 - 947
-
36)
- S. Noda , M. Fujita , T. Asano . Spontaneous-emission control by photonic crystals and nanocavities. Nature Photonics , 8 , 449 - 458
-
37)
- Q. Xu , B. Schmidt , S. Pradhan , M. Lipson . Micrometre-scale silicon electro-optic modulator. Nature , 325 - 327
-
38)
- K. Nozaki , S. Tanabe , A. Shinya . Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nature Photonics , 7 , 477 - 483
-
39)
- T. Tanabe , M. Notomi , S. Mitsugi , A. Shinya , E. Kuramochi . All-optical switches on a silicon chip realized using photonic crystal nanocavities. Appl. Phys. Lett. , 15
-
40)
- S. John . Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. , 23 , 2486 - 2489
-
41)
- N. Iizuka , K. Kaneko , N. Suzuki . All-optical switch utilizing intersubband transition in GaN quantum wells. IEEE J. Quant. Electron. , 765 - 771
-
42)
- D.M. Szymanski , B.D. Jones , M.S. Skolnick . Ultrafast all-optical switching in AlGaAs photonic crystal waveguide interferometers. Appl. Phys. Lett. , 14
-
43)
- H.G. Park , S.H. Kim , S.H. Kwon . Electrically driven single-cell photonic crystal laser. Science , 5689 , 1444 - 1447
-
44)
- T. Tanabe , M. Notomi , S. Mitsugi , A. Shinya , E. Kuramochi . Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip. Opt. Lett. , 19 , 2575 - 2577
-
45)
- Z.Y. Zhang , M. Qiu . Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs. Opt. Express , 17 , 3988 - 3995
-
46)
- H.T. Miyazaki , Y. Kurokawa . Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity. Phys. Rev. Lett. , 9
-
47)
- S. Assefa , F.N. Xia , Y.A. Vlasov . Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature , 81 - 84
-
48)
- S. Nakamura , Y. Ueno , K. Tajima . Femtosecond switching with semiconductor-optical-amplifier-based symmetric Mach-Zehnder-type all-optical switch. Appl. Phys. Lett. , 25 , 3929 - 3931
-
49)
- E. Kuramochi , M. Notomi , S. Mitsugi , A. Shinya , T. Tanabe , T. Watanabe . Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect. Appl. Phys. Lett. , 4
-
50)
- K.W. Goossen , J.A. Walker , L.A. Dasaro . GaAs MQW modulators integrated with silicon CMOS. IEEE Photonics Technol. Lett. , 4 , 360 - 362
-
51)
- B.S. Song , S. Noda , T. Asano , Y. Akahane . Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. , 207 - 210
-
52)
- V.R. Almeida , C.A. Barrios , R.R. Panepucci , M. Lipson . All-optical control of light on a silicon chip. Nature , 7012 , 1081 - 1084
-
53)
- A. Shinya , S. Mitsugi , T. Tanabe . All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express , 3 , 1230 - 1235
-
54)
- G. Bjork , A. Karlsson , Y. Yamamoto . Definition of a laser threshold. Phys. Rev. A , 2 , 1675 - 1680
-
55)
- M.T. Hill , H.J.S. Dorren , T. de Vries . A fast low-power optical memory based on coupled micro-ring lasers. Nature , 7014 , 206 - 209
-
56)
- R.W. Boyd . (1992) Nonlinear optics.
-
57)
- P. Lalanne , C. Sauvan , J.P. Hugonin . Photon confinement in photonic crystal nanocavities. Laser & Photonics Rev. , 6 , 514 - 526
-
58)
- W. D'Oosterlinck , F. Ohman , J. Buron . All-optical flip-flop operation using a SOA and DFB laser diode optical feedback combination. Opt. Express , 10 , 6190 - 6199
-
59)
- A. Shinya , S. Matsuo , T. Yosia . All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. Opt. Express , 23 , 19382 - 19387
-
60)
- T. Tanabe , H. Sumikura , H. Taniyama , A. Shinya , M. Notomi . All-silicon sub-Gb/s telecom detector with low dark current and high quantum efficiency on chip. Appl. Phys. Lett. , 10
-
61)
- S. Matsuo . High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nature Photonics , 648 - 654
-
62)
- B.R. Bennett , R.A. Soref , J.A. Del Alamo . Carrier-induced change in refractive index of InP, GaAs, and InGaAsP. IEEE J. Quantum Electron. , 1 , 113 - 122
-
63)
- M. Notomi , A. Shinya , S. Mitsugi , G. Kira , E. Kuramochi , T. Tanabe . Optical bistable switching action of Si high-Q photonic-crystal nanocavities. Opt. Express , 7 , 2678 - 2687
-
64)
- T. Tanabe , K. Nishiguchi , E. Kuramochi , M. Notomi . Low power and fast electro-optic silicon modulator with lateral p-i-n embedded photonic crystal nanocavity. Opt. Express , 25 , 22505 - 22513
-
65)
- T. Yin , R. Cohen , M.M. Morse . 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express , 21 , 13965 - 13971
-
66)
- M.A. Foster . Broad-band optical parametric gain on a silicon photonic chip. Nature , 960 - 962
-
67)
- M. Notomi , E. Kuramochi , T. Tanabe . Large-scale arrays of ultrahigh-Q coupled nanocavities. Nature Photonics , 12 , 741 - 747
-
68)
- M. Nomura , S. Iwamoto , N. Kumagai , Y. Arakawa . Temporal coherence of a photonic crystal nanocavity laser with high spontaneous emission coupling factor. Phys. Rev. B , 19
-
69)
- Y. Ueno , S. Nakamura , K. Tajima . Record low-power all-optical semiconductor switch operation at ultrafast repetition rates above the carrier cutoff frequency. Opt. Lett. , 23 , 1846 - 1848
-
70)
- T. Mori , Y. Yamayoshi , H. Kawaguchi . Low-switching-energy and high-repetition-frequency all-optical flip-flop operations of a polarization bistable vertical-cavity surface-emitting laser. Appl. Phys. Lett. , 10
-
71)
- Magen, N., Kolodny, A., Weiser, U., Shamir, N.: `Interconnect-power dissipation in a microprocessor', Proc. 2004 Int. Workshop System Level Interconnect Prediction, Session Interconnect Anal. SoCs Microprocess., 2004, p. 7–13.
-
72)
- H. Takano , B.S. Song , T. Asano , S. Noda . Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal. Opt. Express , 8 , 3491 - 3496
-
73)
- H. Kawaguchi , T. Mori , Y. Sato , Y. Yamayoshi . Optical buffer memory using polarization-bistable vertical-cavity surface-emitting lasers. Jpn. J. Appl. Phys. 2, Lett. Express Lett. , L894 - L897
-
74)
- D.A.B. Miller . Device requirements for optical interconnects to silicon chips. Proc. IEEE , 7 , 1166 - 1185
-
1)

Related content
