Optical logic elementary circuits

Access Full Text

Optical logic elementary circuits

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Elementary blocks, performing logic operations, are the building elements for more complex subsystems implementing all-optical digital processing. They can potentially enable next generation optical networks and optical computing, overcoming the limitations of the electronics bandwidth, also guaranteeing scalability, transparency, easy reconfigurability and modularity. Finally, integrated technologies can reduce power consumption, footprint and cost.

Inspec keywords: optical information processing; optical communication equipment; integrated optoelectronics; optical logic

Other keywords: electronics bandwidth; optical computing; logic operations; optical digital processing; integrated technology; complex subsystems; optical logic elementary circuits; optical networks

Subjects: Integrated optoelectronics; Optical communication devices, equipment and systems; Optical logic devices and optical computing techniques; Optical computers, logic elements, and interconnects; Optical communication equipment

References

    1. 1)
    2. 2)
      • Kim, J.H., Kim, B.C., Byun, Y.T.: `All-optical full adder using semiconductor optical amplifiers', Proc. ECOC'03 We4.P75, 2003.
    3. 3)
      • Tangdiongga, E., Mulvad, H.C., Waardt, H.: `SOA-based Clock recovery and demultiplexing in a lab trial of 640-Gb/s OTDM transmission over 50-km fiber link', Proc. ECOC'07, PD 1.2, 2007.
    4. 4)
    5. 5)
    6. 6)
      • Cheng, W., Ali, W., Choi, M.-J.: `A 3b 40 Gsamples/s ADC-DAC in 0.12  m SiGe', Proc. IEEE Int. Solid-State Circuits Conf., February 2004, 1, p. 262–263.
    7. 7)
    8. 8)
    9. 9)
    10. 10)
    11. 11)
      • Ta'eed, V.G., Pelusi, M.D., Eggleton, B.J.: `All-optical wavelength conversion of 80 Gb/s signal in highly nonlinear serpentine chalcogenide planar waveguides', Proc. OFC 2008, OMP2, 2008.
    12. 12)
    13. 13)
    14. 14)
    15. 15)
      • Gutierrez-Castrejon, R.: `160 Gb/s XOR gate using bulk SOA turbo-switched Mach-Zehnder interferometer', Proc. ICEEE 2007, p. 134–137.
    16. 16)
      • Porzi, C., Guina, M., Bogoni, A.: `All-optical NAND/NOR logic gates with passive nonlinear etalon exploiting absorption saturation in semiconductor MQWs', Proc. Photonics in Switching'07, WB2.2, 2007.
    17. 17)
      • Poustie, A.: `Integrated devices for all optical signal processing', Proc. ECOC 2007, 2007, Berlin, Germany, (CIP).
    18. 18)
    19. 19)
    20. 20)
      • Schmidt-Langhorst, C., Ludwig, R., Hu, H.: `Single-channel 1-Tb/s transmission over 480 km DMF for future terabit ethernet systems', Proc. OFC09, OTuN5, 2009.
    21. 21)
    22. 22)
    23. 23)
    24. 24)
      • C. Koos , P. Vorreau , P. Dumon . (2008) Highly-nonlinear silicon photonics slot waveguide.
    25. 25)
    26. 26)
      • J.P. Hayes . (1988) Computer architecture and organization.
    27. 27)
    28. 28)
    29. 29)
      • Andriolli, N., Scaffardi, M., Berrettini, G.: `Multistage interconnection network photonic controller exploiting a cascaded SOA-based ultrafast module', Proc. ECOC'07, P117, 2007.
    30. 30)
    31. 31)
    32. 32)
      • Zhang, S., Li, Z., Liu, Y.: `Optical shift register based on an optical flip-flop memory with a single active element', Proc. ECOC'05, Tu3.5.5, 2005.
    33. 33)
      • B.S. Ham , J. Hahn . Photon logic gates using ultraslow light.
    34. 34)
    35. 35)
    36. 36)
    37. 37)
    38. 38)
    39. 39)
    40. 40)
    41. 41)
    42. 42)
      • Corcoran, B., Vo, T.D., Pelusi, M.D.: `Silicon-chip-based optical performance monitoring of the bandwidth phase and intensity modulated signals', Proc. Photonics in Switching 2010, PDPWG3, 2010.
    43. 43)
    44. 44)
    45. 45)
      • Nielsen, M.L., Fjelde, T., Buron, J.D.: `All-optical bit-pattern recognition in data segments using logic AND and XOR in a single all-active MZI wavelength converter', Proc. ECOC'02, 1.4.6, 2002.
    46. 46)
    47. 47)
    48. 48)
      • J.G. Proakis . (1995) Digital communications.
    49. 49)
    50. 50)
    51. 51)
    52. 52)
    53. 53)
    54. 54)
    55. 55)
    56. 56)
    57. 57)
      • Berrettini, G., Malacarne, A., Ghelfi, P.: `Reconfigurable all-optical logic gate based on a single SOA with improved dynamics', Proc. OFC'06, OFJ5, 2006.
    58. 58)
    59. 59)
    60. 60)
    61. 61)
    62. 62)
    63. 63)
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2010.0105
Loading

Related content

content/journals/10.1049/iet-cds.2010.0105
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading