CMOS multiplier based on the relationship between drain current and inversion charge

Access Full Text

CMOS multiplier based on the relationship between drain current and inversion charge

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors propose a four-quadrant multiplier based on a core cell that exploits the general relationship between the saturation current of an MOS transistor and the source inversion charge density, valid from weak to strong inversion. The advantages of the proposed circuit are simplicity, low distortion and feasibility of low-voltage operation. Experimental results in a 0.35 µm CMOS prototype indicate 1 mA consumption for 1 MHz bandwidth, and distortion level below 1% for an input current of 80% of the full-scale range. The multiplier core area is around 10 000 µm2.

Inspec keywords: MOSFET; low-power electronics; analogue multipliers; CMOS analogue integrated circuits

Other keywords: low-voltage operation; source inversion charge density; size 0.35 mum; MOS transistor; current 1 mA; bandwidth 1 MHz; drain current; four-quadrant multiplier; CMOS analogue multiplier

Subjects: Insulated gate field effect transistors; Analogue processing circuits; CMOS integrated circuits

References

    1. 1)
      • J.-M. Sallese , M. Bucher , F. Krummenacher , P. Fazan . Inversion charge linearization in MOSFET modeling and rigorous derivation of the EKV compact model. Solid-State Electron. , 47 , 677 - 683
    2. 2)
      • H.C. Pao , C.T. Sah . Effects of diffusion current on characteristics of metal-oxide (insulator) semiconductor transistors. Solid-State Electron. , 10 , 927 - 937
    3. 3)
      • Wilamowski, B.M.: `VLSI analog multiplier/divider circuit', IEEE Proc. Int. Symp. Industrial Electronics, July 1998, Coimbra, Portugal, p. 493–496.
    4. 4)
      • M.A. Maher , C.A. Mead , P. Losleben . (1987) A physical charge-controlled model for MOS transistors.
    5. 5)
      • Pereira, F.A., Oliveira, M.C.G., Cunha, A.I.A.: `CMOS analog current-mode multiplier based on the advanced compact MOSFET model', IEEE Proc. ISCAS 2005, May 2005, Kobe, Japan, 2, p. 1020–1023.
    6. 6)
      • Szczepanski, S., Koziel, S.: `1.2 V low-power four-quadrant CMOS transconductance multiplier operating in saturation region', IEEE Proc. ISCAS 2004, May 2004, Vancouver, Canada, 1, p. 1016–1019.
    7. 7)
      • Hashiesh, M.A., Mahmoud, S.A., Soliman, A.M.: `New current-mode and voltage mode CMOS analog multipliers', IEEE Proc. Int. Conf. Electrical, Electronic and Computer Engineering, September 2004, Cairo, Egypt, p. 435–438.
    8. 8)
      • K. Tanno , O. Ishizuka , Z. Tang . Four-quadrant CMOS current-mode multiplier independent of device parameters. IEEE Trans. Circuits Syst. II , 47 , 473 - 477
    9. 9)
      • A.I.A. Cunha , M.C. Schneider , C. Galup-Montoro . An MOS transistor model for analog circuit design. IEEE J. Solid-State Circuits , 33 , 1510 - 1519
    10. 10)
      • E. Camacho-Galeano , C. Galup-Montoro , M.C. Schneider . A 2-nW 1.1-V self-biased current reference in CMOS technology. IEEE Trans. Circuits Syst. II , 52 , 61 - 65
    11. 11)
      • SMASH Circuit Simulator, Dolphin Integration, Meylan, France, http://www.dolphin.fr.
    12. 12)
      • Machado, M.B., Cunha, A.I.A., Schneider, M.C., Galup-Montoro, C.: `Transconductance-based CMOS analog multiplier', Proc. NEWCAS'08, June 2008, Montréal, Québec, Canada, p. 377–370.
    13. 13)
      • C. Chen , Z. Li . A low-power CMOS analog multiplier. IEEE Trans. Circuits Syst. II , 53 , 100 - 104
    14. 14)
      • Machado, M.B.: `Multiplicador analógico CMOS baseado na relação transcondutância x corrente', November 2007, Master, Universidade Federal de Santa Catarina, Florianópolis, Brazil.
    15. 15)
      • Gravati, M., Valle, M., Ferri, G., Guerrini, N., Reyes, L.: `A novel current-mode very low power analog CMOS four-quadrant multiplier', IEEE Proc. European Solid-State Circuits Conf., September 2005, Grenoble, France, p. 495–498.
    16. 16)
      • D.M.W. Leenaerts , G.H.M. Joordens , J.A. Hegt . A 3.3 V 625 kHz switched-current multiplier. IEEE J. Solid-State Circuits , 31 , 1340 - 1343
    17. 17)
      • Prommee, P., Somdunyakanok, M., Kummgern, M., Deijhan, K.: `Single low-supply current-mode CMOS analog multiplier circuit', IEEE Proc. Int. Symp. Communications and Information Technologies, September 2006, Bangkok, Thailand, p. 1101–1104.
    18. 18)
      • A.I.A. Cunha , M.C. Schneider , C. Galup-Montoro . An explicit physical model for the long-channel MOS transistor including small-signal parameters. Solid-State Electron. , 38 , 1945 - 1952
    19. 19)
      • G. Han , E. Sánchez-Sinencio . CMOS transconductance multipliers: a tutorial. IEEE Trans. Circuits Syst. II , 45 , 1550 - 1563
    20. 20)
      • H.J. Oguey , D. Aebischer . CMOS current reference without resistance. IEEE J. Solid-State Circuits , 32 , 1132 - 1135
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2008.0287
Loading

Related content

content/journals/10.1049/iet-cds.2008.0287
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading