Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Predicting the performance and reliability of future field programmable gate arrays routing architectures with carbon nanotube bundle interconnect

Predicting the performance and reliability of future field programmable gate arrays routing architectures with carbon nanotube bundle interconnect

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The authors investigate the performance and reliability of routing architectures in field programmable gate arrays (FPGA) that utilise bundles of single-walled carbon nanotubes (SWCNT) as wires in the FPGA interconnect fabric in future process technologies here. To leverage the performance advantages of nanotube-based interconnect, we explore several important aspects of the FPGA routing architecture including the wire length segmentation distribution and the switch/connection block configurations. The authors also investigate the impact of statistical variations in interconnect properties on FPGA timing yield. The results demonstrate that FPGAs utilising SWCNT bundle interconnect can achieve up to a 54% improvement in area-delay product over the best performing architecture with standard copper interconnect in 22 nm process technology. Furthermore, FPGAs implemented using SWCNT-based interconnect can provide a superior performance-yield trade-off of up to 43% over FPGAs implemented using traditional copper interconnect in future process technologies.

References

    1. 1)
      • Y. Awano . Carbon nanotube technologies for LSI via interconnects. IEICE Trans. Electron. , 11 , 1499 - 1503
    2. 2)
      • J.-Y. Park , S. Rosenblatt , Y. Yaish . Electron-phonon scattering in metallic single-walled carbon nanotubes. Nano Lett. , 3 , 517 - 520
    3. 3)
      • M.S. Arnold , A.A. Green , J.F. Hulvat , S.I. Stupp , M.C. Hersam . Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. , 60 - 65
    4. 4)
      • J.J. Plombon , K.P. OBrien , F. Gstrein , V.M. Dubin , Y. Jiao . High-frequency electrical properties of individual and bundled carbon nanotubes. Appl. Phys. Lett.
    5. 5)
      • B.Q. Wei , R. Vajtai , P.M. Ajayan . Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. , 8 , 1172 - 1174
    6. 6)
      • A. Naeemi , J.D. Meindl . Impact of electron-phonon scattering on the performance of carbon nanotube interconnects for GSI. IEEE Electron Device Lett. , 7 , 476 - 478
    7. 7)
      • T. Hunger , B. Lengeler , J. Appenzeller . Transport in ropes of carbon nanotubes: contact barriers and luttinger liquid theory. Phys. Rev. B
    8. 8)
      • Kreupl, F., Graham, A.P., Liebau, M., Duesberg, G.S., Seidel, R., Unger, E.: `Carbon nanotubes for interconnect applications', Proceedings of the IEEE International Electron Devices Meeting, December 2004, p. 683–686.
    9. 9)
      • L. Henrard , A. Loiseau , C. Joumet , P. Bernier . Study of the symmetry of single-wall nanotubes by electron diffraction. Eur. Phys. J. B , 661 - 669
    10. 10)
      • B.K. Agrawal , S. Agrawal , R. Srivastava , S. Singh . Ab Initio Study of 4 A Armchair carbon nanoropes: orientation-dependent properties. Phys. Rev. B
    11. 11)
      • J. Appenzeller , R. Martel , P. Avouris , H. Stahl , B. Lengeler . Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Appl. Phys. Lett. , 21 , 3312 - 3315
    12. 12)
      • Nieuwoudt, A., Massoud, Y.: `Assessing the implications of process variations on future carbon nanotube bundle interconnect solutions', Proceedings of the International Symposium on Quality Electronic Design, March 2007, p. 119–126.
    13. 13)
      • A. Nieuwoudt , Y. Massoud . Performance implications of inductive effects for carbon nanotube bundle interconnect. IEEE Electron Device Lett. , 3 , 446 - 455
    14. 14)
      • Eachempati, S., Nieuwoudt, A., Gayasen, A., Narayanan, V., Massoud, Y.: `Assessing carbon nanotube bundle interconnect for future FPGA architectures', Proceedings of the IEEE Design, Automation and Test in Europe Conference, April 2007, p. 307–312.
    15. 15)
      • A. Nieuwoudt , Y. Massoud . On the optimal design, performance, and reliability of future carbon nanotube-based interconnect solutions. IEEE Trans. Electron Devices , 8 , 2097 - 2110
    16. 16)
      • Y. Massoud , S. Majors , J. Kawa , T. Bustami , D. MacMillen , J. White . Managing on-chip inductive effects. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 6 , 789 - 798
    17. 17)
      • Wong, H.Y., Cheng, L., Lin, Y., He, L.: `FPGA device and architecture evaluation considering process variations', Proceedings of the IEEE/ACM International Conference on Computer Aided Design, June 2005, p. 19–24.
    18. 18)
      • Nabaa, G., Azizi, N., Najm, F.N.: `An adaptive FPGA architecture with process variation compensation and reduced leakage', Proceedings of the IEEE/ACM Design Automation Conference, July 2006, p. 624–629.
    19. 19)
      • ITRS: International Technology Roadmap for Semiconductors, 2005.
    20. 20)
      • H. Suzuura , T. Ando . Phonons and electron-phonon scattering in carbon nanotubes. Phys. Rev. B , 23
    21. 21)
      • J. Jiang , J. Dong , H.T. Yang , D.Y. Xing . Universal expression for localization length in metallic carbon nanotubes. Phys. Rev. B , 4
    22. 22)
      • Betz, V., Rose, J.: `VPR: a new packing, placement and routing tool for FPGA research', Proceedings of the International Workshop Field-Programmable Logic and Applications, 1997, p. 213–222.
    23. 23)
      • Gayasen, A., Narayanan, V.: `Exploring technology alternatives for nano-scale FPGA interconnects', Proceedings of the IEEE/ACM Design Automation Conference, 2005, p. 921–926.
    24. 24)
      • Z. Yao , C.L. Kane , C. Dekker . High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. , 13 , 2941 - 2944
    25. 25)
      • Agarwal, A., Blaauw, D., Zolotov, V.: `Statistical timing analysis for intra-die process-variations with spatial correlations', Proceedings of the IEEE/ACM International Conference on Computer Aided Design, 2003, p. 900–907.
    26. 26)
      • P.L. McEuen , J.-Y. Park . Electron transport in single-walled carbon nanotubes. Mater. Res. Soc. Bull. , 4 , 272 - 275
    27. 27)
      • M. Zhang , X. Huo , P.C.H. Chan , Q. Liang , Z.K. Tang . Radio-frequency characterization for the single-walled carbon nanotubes. Appl. Phys. Lett.
    28. 28)
      • Dehon, A., Wilson, M.J.: `Nanowire-based sublithographic programmable logic arrays', Proceedings of the International Workshop Field-Programmable Logic and Applications, 2004, p. 123–132.
    29. 29)
      • J.W.G. Wildoeer , L.C. Venema , A.C. Rinzler , R.E. Smalley , C. Dekker . Electronic structure of atomically resolved carbon nanotubes. Nature , 59 - 61
    30. 30)
      • Y. Massoud , A. Nieuwoudt . Modeling and design challenges and solutions for carbon nanotube-based interconnect in future high performance integrated circuits. ACM J. Emerg. Technol. Comput. Syst. , 3 , 155 - 196
    31. 31)
      • S.R. Lustig , A. Jagota , C. Khripin , M. Zheng . Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT Hybrids. J. Phys. Chem. B , 7 , 2559 - 2566
    32. 32)
      • W. Liang , M. Bockrath , D. Bozovic , J.H. Hafner , M. Tinkham , H. Park . Fabry-perot interference in a nanotube electron waveguide. Nature , 665 - 668
    33. 33)
      • A. Deutsch , G.V. Kopcsay , P.J. Restle . When are transmission-line effects important for on-chip interconnections?. IEEE Trans. Microw. Theory Tech. , 10 , 1836 - 1846
    34. 34)
      • A. Nieuwoudt , Y. Massoud . Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques. IEEE Trans. Electron Devices , 10 , 2460 - 2466
    35. 35)
      • N. Peng , Q. Zhang , J. Li , N. Liu . Influences of AC electric field on the spatial distribution of carbon nanotubes formed between electrodes. J. Appl. Phys.
    36. 36)
      • A. Naeemi , R. Sarvari , J.D. Meindl . Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI). IEEE Electron Device Lett. , 2 , 84 - 86
    37. 37)
      • C.T. White , T.N. Todorov . Carbon nanotubes as long ballistic conductors. Nature , 240 - 242
    38. 38)
      • A. Thess , R. Lee , P. Nikolaev . Crystalline ropes of metallic carbon nanotubes. Science , 483 - 487
    39. 39)
      • Eachempati, S., Vijaykrishnan, N., Nieuwoudt, A., Massoud, Y.: `Impact of process variations on carbon nanotube bundle interconnect for future FPGA architectures', Proceedings of the IEEE Computer Society Annual Symposium on VLSI, May 2007, p. 516–517.
    40. 40)
      • A. DeHon , R. Rubin . Design of FPGA interconnect for multilevel metallization. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. , 10 , 1038 - 1050
    41. 41)
      • A. Nieuwoudt , Y. Massoud . Understanding the impact of inductance in carbon nanotube bundles for VLSI interconnect using scalable modeling techniques. IEEE Trans. Nanotechnol. , 6 , 758 - 765
    42. 42)
      • J.P. Burke . An RF circuit model for carbon nanotubes. IEEE Trans. Nanotechnol. , 1 , 55 - 58
    43. 43)
      • J.M. Tour , W.L. Van Zandt , C.P. Husband . Nanocell logic gates for molecular computing. IEEE Trans. Nanotechnol. , 2 , 100 - 109
    44. 44)
      • Y. Maeda , S.-I. Kimura , M. Kanda . Large-scale separation of metallic and semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. , 10287 - 10290
    45. 45)
      • A. Nieuwoudt , Y. Massoud . On the impact of process variations for carbon nanotube bundles for VLSI interconnect. IEEE Trans. Electron Devices , 4 , 305 - 307
    46. 46)
      • R.H. Baughman , A.A. Zakhidov , W.A. de Heer . Carbon nanotubes-the route toward applications. Science , 787 - 792
    47. 47)
      • M. Liebau , A.P. Graham , G.S. Duesberg , E. Unger , R. Seidel , F. Kreupl . Nanoelectronics based on carbon nanotubes: technological challenges and recent developments. Fullerenes Nanotubes Carbon Nanostructures , 1 , 255 - 258
    48. 48)
      • Nieuwoudt, A., Mondal, M., Massoud, Y.: `Predicting the performance and reliability of carbon nanotube bundles for on-chip interconnect', Proceedings of the Asia and South Pacific Design Automation Conference, January 2007, p. 708–713.
    49. 49)
      • R. Krupke , F. Hennrich , H.W. Lohneysen , M.M. Kappes . Separation of metallic from semiconducting single-walled carbon nanotubes. Science
    50. 50)
      • Goldstein, S.C., Budiu, M.: `NanoFabrics: spatial computing using molecular electronics', Proceedings of the International Symposium on Computer Architecture, June 2001, p. 178–189.
    51. 51)
      • W. Kim , A. Javey , R. Tu , J. Cao , Q. Wang , H. Dai . Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett.
    52. 52)
      • Nihei, M., Kondo, D., Kawabata, A.: `Low-resistance multi-walled carbon nanotube vias with parallel channel conduction of inner shells', Proceedings of the IEEE International Interconnect Technology Conference, June 2005, p. 234–236.
    53. 53)
      • A. Maiti , A. Svizhenko , M.P. Anantram . Electronic transport through carbon nanotubes: effects of structural deformation and tube chirality. Phys. Rev. Lett.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2008.0149
Loading

Related content

content/journals/10.1049/iet-cds.2008.0149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address