Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Review of gait recognition approaches and their challenges on view changes

Gait or walking pattern has been known as one of the alternative biometric solutions used in surveillance monitoring and control. The methods of gait recognition have been developed for decades using various techniques in different concepts. This study is a review paper collecting gait recognition approaches in both perspectives of model-based approaches relying on key joints/parts of the human body and appearance-based approaches relying on gait silhouettes. The existing methods addressing one of the most important real-world challenges, i.e. view changes, are emphasised and summarised in this study. Also, recent methods based on convolutional neural network solving the gait recognition and their challenges of view changes are illustrated. In addition, the publicly-available gait datasets and corresponding recognition performance and comparison are concluded in each section. The state-of-the-art gait recognition methods can achieve up to a perfect score of 100% accuracy for the normal walking, and above 80% in average for the view changes ranging from 0° to 180°.

References

    1. 1)
      • 49. Liao, R., Yu, S., An, W., et al: ‘A model-based gait recognition method with body pose and human prior knowledge’, Pattern Recognit., 2020, 98, p. 107069.
    2. 2)
      • 14. Lam, T.H., Cheung, K.H., Liu, J.N.: ‘Gait flow image: a silhouette-based gait representation for human identification’, Pattern Recognit., 2011, 44, (4), pp. 973987.
    3. 3)
      • 16. Wang, L., Tan, T., Ning, H., et al: ‘Silhouette analysis-based gait recognition for human identification’, IEEE Trans. Pattern Anal. Mach. Intell., 2003, 25, (12), pp. 15051518.
    4. 4)
      • 62. Kusakunniran, W.: ‘Recognizing gaits on spatio-temporal feature domain’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (9), pp. 14161423.
    5. 5)
    6. 6)
      • 94. Makihara, Y., Sagawa, R., Mukaigawa, Y., et al: ‘Gait recognition using a view transformation model in the frequency domain’. European Conf. on Computer Vision, Graz, Austria, 2006, pp. 151163.
    7. 7)
      • 80. Krzeszowski, T., Switonski, A., Kwolek, B., et al: ‘DTW-based gait recognition from recovered 3-D joint angles and inter-ankle distance’. Int. Conf. on Computer Vision and Graphics, Warsaw, Poland, 2014, pp. 356363.
    8. 8)
      • 82. Kwolek, B., Michalczuk, A., Krzeszowski, T., et al: ‘Calibrated and synchronized multi-view video and motion capture dataset for evaluation of gait recognition’, Multimedia Tools Appl., 2019, 78, (22), pp. 3243732465.
    9. 9)
      • 65. Alotaibi, M., Mahmood, A.: ‘Improved gait recognition based on specialized deep convolutional neural network’, Comput. Vis. Image Underst., 2017, 164, pp. 103110.
    10. 10)
      • 41. Yam, C., Nixon, M.S., Carter, J.N.: ‘Automated person recognition by walking and running via model-based approaches’, Pattern Recognit., 2004, 37, (5), pp. 10571072.
    11. 11)
      • 57. Han, J., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 28, (2), pp. 316322.
    12. 12)
      • 86. Isaac, E.R., Elias, S., Rajagopalan, S., et al: ‘View-invariant gait recognition through genetic template segmentation’, IEEE Signal Process. Lett., 2017, 24, (8), pp. 11881192.
    13. 13)
      • 60. Lishani, A.O., Boubchir, L., Khalifa, E., et al: ‘Human gait recognition using GEI-based local multi-scale feature descriptors’, Multimedia Tools Appl., 2019, 78, (5), pp. 57155730.
    14. 14)
      • 56. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Speed-invariant gait recognition based on Procrustes shape analysis using higher-order shape configuration’. 2011 18th IEEE Int. Conf. on Image Processing, Brussels, Belguim, 2011, pp. 545548.
    15. 15)
      • 92. Verlekar, T.T., Correia, P.L., Soares, L.D.: ‘View-invariant gait recognition system using a gait energy image decomposition method’, IET Biometrics, 2017, 6, (4), pp. 299306.
    16. 16)
      • 33. Andersson, V.O., Araujo, R.M.: ‘Person identification using anthropometric and gait data from Kinect sensor’. Twenty-Ninth AAAI Conf. on Artificial Intelligence, Austin, TX, USA., 2015.
    17. 17)
      • 35. Choi, S., Kim, J., Kim, W., et al: ‘Skeleton-based gait recognition via robust frame-level matching’, IEEE Trans. Inf. Forensics Sec., 2019, 14, (10), pp. 25772592.
    18. 18)
      • 75. López-Fernández, D., Madrid-Cuevas, F.J., Carmona-Poyato, A., et al: ‘A new approach for multi-view gait recognition on unconstrained paths’, J. Vis. Commun. Image Represent., 2016, 38, pp. 396406.
    19. 19)
      • 78. Krzeszowski, T., Michalczuk, A., Kwolek, B., et al: ‘Gait recognition based on marker-less 3D motion capture’. 2013 10th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance, Krakow, Poland, 2013, pp. 232237.
    20. 20)
      • 37. Cunado, D., Nixon, M.S., Carter, J.N.: ‘Using gait as a biometric, via phase-weighted magnitude spectra’. Int. Conf. on Audio-and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland, 1997, pp. 93102.
    21. 21)
      • 47. Alharbi, A., Alharbi, F., Kamioka, E.: ‘Skeleton based gait recognition for long and baggy clothes’. MATEC Web of Conf., Les Ulis, France, 2019, vol. 277, p. 03005.
    22. 22)
      • 39. Bouchrika, I., Nixon, M.S.: ‘Model-based feature extraction for gait analysis and recognition’. Int. Conf. on Computer Vision/Computer Graphics Collaboration Techniques and Applications, Rocquencourt, France, 2007, pp. 150160.
    23. 23)
      • 69. Zhang, Y., Huang, Y., Wang, L., et al: ‘A comprehensive study on gait biometrics using a joint CNN-based method’, Pattern Recognit., 2019, 93, pp. 228236.
    24. 24)
      • 83. Kale, A., Chowdhury, A.R., Chellappa, R.: ‘Towards a view invariant gait recognition algorithm’. Proc. IEEE Conf. on Advanced Video and Signal Based Surveillance, Miami, FL, USA., 2003, pp. 143150.
    25. 25)
      • 22. Shutler, J.D., Grant, M.G., Nixon, M.S., et al: ‘On a large sequence-based human gait database’, in ‘Applications and science in soft computing’ (Springer, Germany, 2004), pp. 339346.
    26. 26)
      • 103. Thapar, D., Nigam, A., Aggarwal, D., et al: ‘VGR-Net: a view invariant gait recognition network’. 2018 IEEE 4th Int. Conf. on Identity, Security, and Behavior Analysis (ISBA), Nanyang Executive Centre, Singapore, 2018, pp. 18.
    27. 27)
      • 20. Roy, A., Sural, S., Mukherjee, J.: ‘Gait recognition using pose kinematics and pose energy image’, Signal Process., 2012, 92, (3), pp. 780792.
    28. 28)
      • 73. Zhang, Z., Troje, N.F.: ‘View-independent person identification from human gait’, Neurocomputing, 2005, 69, (1–3), pp. 250256.
    29. 29)
      • 12. Boulgouris, N.V., Plataniotis, K.N., Hatzinakos, D.: ‘Gait recognition using dynamic time warping’. IEEE 6th Workshop on Multimedia Signal Processing, Siena, Italy, 2004, pp. 263266.
    30. 30)
      • 21. Feng, Y., Li, Y., Luo, J.: ‘Learning effective gait features using LSTM’. 2016 23rd Int. Conf. on Pattern Recognition (ICPR), Cancun, Mexico, 2016, pp. 325330.
    31. 31)
      • 11. Pappas, I.P., Popovic, M.R., Keller, T., et al: ‘A reliable gait phase detection system’, IEEE Trans. Neural Syst. Rehabil. Eng., 2001, 9, (2), pp. 113125.
    32. 32)
      • 2. Nixon, M.S., Tan, T., Chellappa, R.: ‘Human identification based on gait’, vol. 4 (Springer Science & Business Media, Germany, 2010).
    33. 33)
      • 97. Xing, X., Wang, K., Yan, T., et al: ‘Complete canonical correlation analysis with application to multi-view gait recognition’, Pattern Recognit., 2016, 50, pp. 107117.
    34. 34)
      • 50. Li, N., Zhao, X., Ma, C.: ‘A model-based gait recognition method based on gait graph convolutional networks and joints relationship pyramid mapping’, arXiv preprint arXiv:200508625, 2020.
    35. 35)
      • 54. Liu, Z., Sarkar, S.: ‘Improved gait recognition by gait dynamics normalization’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (6), pp. 863876.
    36. 36)
      • 53. BenAbdelkader, C., Cutler, R., Davis, L.: ‘Motion-based recognition of people in EigenGait space’. Proc. Fifth IEEE Int. Conf. on Automatic Face Gesture Recognition, Washington, DC, USA., 2002, pp. 267272.
    37. 37)
      • 85. Zeng, W., Wang, C.: ‘View-invariant gait recognition via deterministic learning’, Neurocomputing, 2016, 175, pp. 324335.
    38. 38)
      • 44. Makihara, Y., Suzuki, A., Muramatsu, D., et al: ‘Joint intensity and spatial metric learning for robust gait recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA., 2017, pp. 57055715.
    39. 39)
      • 9. Kusakunniran, W.: ‘Extracting gait figures in a video based on markerless motion’. 2015 Seventh Int. Conf. on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 2015, pp. 306309.
    40. 40)
      • 46. Rouzbeh, S., Babaei, M.: ‘Human gait recognition using body measures and joint angles’, Int. J. Sci. Knowl., 2015, 6, (4), pp. 1016.
    41. 41)
      • 18. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Cross-view and multi-view gait recognitions based on view transformation model using multi-layer perceptron’, Pattern Recognit. Lett., 2012, 33, (7), pp. 882889.
    42. 42)
      • 8. Yoo, J.H., Nixon, M.S.: ‘Automated markerless analysis of human gait motion for recognition and classification’, ETRI J., 2011, 33, (2), pp. 259266.
    43. 43)
      • 63. Sattrupai, T., Kusakunniran, W.: ‘Deep trajectory based gait recognition for human re-identification’. TENCON 2018-2018 IEEE Region 10 Conf., Jeju, Republic of Korea, 2018, pp. 17231726.
    44. 44)
      • 79. Switonski, A., Krzeszowski, T., Josinski, H., et al: ‘Gait recognition on the basis of markerless motion tracking and DTW transform’, IET Biometrics, 2018, 7, (5), pp. 415422.
    45. 45)
      • 71. Shakhnarovich, G., Lee, L., Darrell, T.: ‘Integrated face and gait recognition from multiple views’. Proc. 2001 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR 2001), Kauai, HI, USA., 2001, vol. 1.
    46. 46)
      • 3. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Pairwise shape configuration-based PSA for gait recognition under small viewing angle change’. 2011 8th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), Klagenfurt, Austria, 2011, pp. 1722.
    47. 47)
      • 32. Iwashita, Y., Ogawara, K., Kurazume, R.: ‘Identification of people walking along curved trajectories’, Pattern Recognit. Lett., 2014, 48, pp. 6069.
    48. 48)
      • 88. Ben, X., Zhang, P., Lai, Z., et al: ‘A general tensor representation framework for cross-view gait recognition’, Pattern Recognit., 2019, 90, pp. 8798.
    49. 49)
      • 101. Chao, H., He, Y., Zhang, J., et al: ‘GaitSet: regarding gait as a set for cross-view gait recognition’. Proc. AAAI Conf. on Artificial Intelligence, Honolulu, HI, USA., 2019, vol. 33, pp. 81268133.
    50. 50)
      • 70. Castro, F.M., Marn-Jiménez, M.J., Guil, N., et al: ‘Multimodal feature fusion for CNN-based gait recognition: an empirical comparison’, Neural Comput. Appl., 2020, 32, pp. 1417314193.
    51. 51)
      • 96. Liu, N., Tan, Y.P.: ‘View invariant gait recognition’. 2010 IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Dallas, TX, USA., 2010, pp. 14101413.
    52. 52)
      • 48. Nattee, C., Khamsemanan, N.: ‘A deep neural network approach for model-based gait recognition’, Thai J. Math., 2019, 17, (1), pp. 8997.
    53. 53)
      • 74. Zhao, G., Liu, G., Li, H., et al: ‘3D gait recognition using multiple cameras’. 7th Int. Conf. on Automatic Face and Gesture Recognition (FGR06), Southampton, UK., 2006, pp. 529534.
    54. 54)
      • 72. Bodor, R., Drenner, A., Fehr, D., et al: ‘View-independent human motion classification using image-based reconstruction’, Image Vis. Comput., 2009, 27, (8), pp. 11941206.
    55. 55)
      • 4. Li, M., Chen, S., Chen, X., et al: ‘Actional-structural graph convolutional networks for skeleton-based action recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Long Beach, CA, USA., 2019, pp. 35953603.
    56. 56)
      • 34. Sun, J., Wang, Y., Li, J., et al: ‘View-invariant gait recognition based on Kinect skeleton feature’, Multimedia Tools Appl., 2018, 77, (19), pp. 2490924935.
    57. 57)
      • 19. Tan, D., Huang, K., Yu, S., et al: ‘Uniprojective features for gait recognition’. Int. Conf. on Biometrics, Seoul, Republic of Korea, 2007, pp. 673682.
    58. 58)
      • 95. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Support vector regression for multi-view gait recognition based on local motion feature selection’. 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA., 2010, pp. 974981.
    59. 59)
      • 51. Cao, Z., Hidalgo, G., Simon, T., et al: ‘OpenPose: real-time multi-person 2d pose estimation using part affinity fields’, arXiv preprint arXiv:181208008, 2018.
    60. 60)
      • 61. Yogarajah, P., Condell, J.V., Prasad, G.: ‘PRWGEI: Poisson random walk based gait recognition’. 2011 7th Int. Symp. on Image and Signal Processing and Analysis (ISPA), Dubrovnik, Croatia, 2011, pp. 662667.
    61. 61)
      • 26. Sarkar, S., Phillips, P.J., Liu, Z., et al: ‘The humanID gait challenge problem: data sets, performance, and analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 162177.
    62. 62)
      • 15. Ben, X., Meng, W., Yan, R.: ‘Dual-ellipse fitting approach for robust gait periodicity detection’, Neurocomputing, 2012, 79, pp. 173178.
    63. 63)
      • 6. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Recognizing gaits across views through correlated motion co-clustering’, IEEE Trans. Image Process., 2013, 23, (2), pp. 696709.
    64. 64)
      • 27. Tsuji, A., Makihara, Y., Yagi, Y.: ‘Silhouette transformation based on walking speed for gait identification’. 2010 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, USA., 2010, pp. 717722.
    65. 65)
      • 30. Kale, A., Sundaresan, A., Rajagopalan, A., et al: ‘Identification of humans using gait’, IEEE Trans. Image Process., 2004, 13, (9), pp. 11631173.
    66. 66)
      • 67. Wolf, T., Babaee, M., Rigoll, G.: ‘Multi-view gait recognition using 3D convolutional neural networks’. 2016 IEEE Int. Conf. on Image Processing (ICIP), Phoenix, AZ, USA., 2016, pp. 41654169.
    67. 67)
      • 40. Lee, L., Grimson, W.E.L.: ‘Gait analysis for recognition and classification’. Proc. Fifth IEEE Int. Conf. on Automatic Face Gesture Recognition, Washington, DC, United States, 2002, pp. 155162.
    68. 68)
      • 23. Yu, S., Tan, D., Tan, T.: ‘A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition’. 18th Int. Conf. on Pattern Recognition (ICPR'06), Hong Kong, People's Republic of China, 2006, vol. 4, pp. 441444.
    69. 69)
      • 7. Kharb, A., Saini, V., Jain, Y., et al: ‘A review of gait cycle and its parameters’, IJCEM Int. J. Comput. Eng. Manag., 2011, 13, pp. 7883.
    70. 70)
      • 99. Muramatsu, D., Makihara, Y., Yagi, Y.: ‘View transformation model incorporating quality measures for cross-view gait recognition’, IEEE Trans. Cybern., 2015, 46, (7), pp. 16021615.
    71. 71)
      • 98. Muramatsu, D., Shiraishi, A., Makihara, Y., et al: ‘Gait-based person recognition using arbitrary view transformation model’, IEEE Trans. Image Process., 2014, 24, (1), pp. 140154.
    72. 72)
      • 77. Krzeszowski, T., Kwolek, B., Michalczuk, A., et al: ‘View independent human gait recognition using markerless 3D human motion capture’. Int. Conf. on Computer Vision and Graphics, Warsaw, Poland, 2012, pp. 491500.
    73. 73)
      • 36. Hofmann, M., Geiger, J., Bachmann, S., et al: ‘The TUM gait from audio, image and depth (GAID) database: multimodal recognition of subjects and traits’, J. Vis. Commun. Image Represent., 2014, 25, (1), pp. 195206.
    74. 74)
      • 52. BenAbdelkader, C., Cutler, R., Nanda, H., et al: ‘EigenGait: motion-based recognition of people using image self-similarity’. Int. Conf. on Audio- and Video-based Biometric Person Authentication, Halmstad, Sweden, 2001, pp. 284294.
    75. 75)
      • 68. Liu, Y., Jiang, X., Sun, T., et al: ‘3D gait recognition based on a CNN-LSTM network with the fusion of SkeGEI and DA features’. 2019 16th IEEE Int. Conf. on Advanced Video and Signal Based Surveillance (AVSS), Taipei, Taiwan, 2019, pp. 18.
    76. 76)
      • 59. Lishani, A.O., Boubchir, L., Bouridane, A.: ‘Haralick features for GEI-based human gait recognition’. 2014 26th Int. Conf. on Microelectronics (ICM), Doha, Qatar, 2014, pp. 3639.
    77. 77)
      • 17. Kusakunniran, W., Wu, Q., Li, H., et al: ‘Multiple views gait recognition using view transformation model based on optimized gait energy image’. 2009 IEEE 12th Int. Conf. on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan, 2009, pp. 10581064.
    78. 78)
      • 1. Song, S.M., Waldron, K.J.: ‘An analytical approach for gait study and its applications on wave gaits’, Int. J. Rob. Res., 1987, 6, (2), pp. 6071.
    79. 79)
      • 28. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The OU-ISIR gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
    80. 80)
      • 87. Jia, N., Sanchez, V., Li, C.T.: ‘On view-invariant gait recognition: a feature selection solution’, IET Biometrics, 2018, 7, (4), pp. 287295.
    81. 81)
      • 81. Kwolek, B., Krzeszowski, T., Michalczuk, A., et al: ‘3D gait recognition using spatio-temporal motion descriptors’. Asian Conf. on Intelligent Information and Database Systems, Bangkok, Thailand, 2014, pp. 595604.
    82. 82)
      • 31. López-Fernández, D., Madrid-Cuevas, F.J., Carmona-Poyato, Á., et al: ‘The AVA multi-view dataset for gait recognition’. Int. Workshop on Activity Monitoring by Multiple Distributed Sensing, Stockholm, Sweden, 2014, pp. 2639.
    83. 83)
      • 13. Mori, A., Makihara, Y., Yagi, Y.: ‘Gait recognition using period-based phase synchronization for low frame-rate videos’. 2010 20th Int. Conf. on Pattern Recognition, Istanbul, Turkey, 2010, pp. 21942197.
    84. 84)
      • 38. Cunado, D., Nixon, M.S., Carter, J.N.: ‘Automatic extraction and description of human gait models for recognition purposes’, Comput. Vis. Image Underst., 2003, 90, (1), pp. 141.
    85. 85)
      • 29. Takemura, N., Makihara, Y., Muramatsu, D., et al: ‘Multi-view large population gait dataset and its performance evaluation for cross-view gait recognition’, IPSJ Trans. Comput. Vis. Appl., 2018, 10, (1), p. 4.
    86. 86)
      • 24. Tan, D., Huang, K., Yu, S., et al: ‘Efficient night gait recognition based on template matching’. 18th Int. Conf. on Pattern Recognition (ICPR'06), Hong Kong, People's Republic of China, 2006, vol. 3, pp. 10001003.
    87. 87)
      • 10. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Gait recognition across various walking speeds using higher order shape configuration based on a differential composition model’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2012, 42, (6), pp. 16541668.
    88. 88)
      • 58. Wang, C., Zhang, J., Wang, L., et al: ‘Human identification using temporal information preserving gait template’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 34, (11), pp. 21642176.
    89. 89)
      • 90. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘Gait recognition under various viewing angles based on correlated motion regression’, IEEE Trans. Circuits Syst. Video Technol., 2012, 22, (6), pp. 966980.
    90. 90)
      • 93. He, Y., Zhang, J., Shan, H., et al: ‘Multi-task GANS for view-specific feature learning in gait recognition’, IEEE Trans. Inf. Forensics Sec., 2018, 14, (1), pp. 102113.
    91. 91)
      • 76. Tang, J., Luo, J., Tjahjadi, T., et al: ‘Robust arbitrary-view gait recognition based on 3D partial similarity matching’, IEEE Trans. Image Process., 2016, 26, (1), pp. 722.
    92. 92)
      • 66. Zhang, C., Liu, W., Ma, H., et al: ‘Siamese neural network based gait recognition for human identification’. 2016 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, People's Republic of China, 2016, pp. 28322836.
    93. 93)
      • 25. Gross, R., Shi, J.: ‘The CMU motion of body (MoBo) database technical report’. Robotic Institute, Carnegie Mellon University, Pittsburgh, PA, CMU-RITR-01-18, 2001.
    94. 94)
      • 42. Wagg, D.K., Nixon, M.S.: ‘On automated model-based extraction and analysis of gait’. Proc. Sixth IEEE Int. Conf. on Automatic Face and Gesture Recognition, 2004, Seoul, Republic of Korea, 2004, pp. 1116.
    95. 95)
      • 55. Chai, Y., Wang, Q., Zhao, R., et al: ‘A new automatic gait recognition method based on the perceptual curve’. TENCON 2005-2005 IEEE Region 10 Conf., Melbourne, Australia, 2005, pp. 15.
    96. 96)
      • 89. Bashir, K., Xiang, T., Gong, S.: ‘Cross view gait recognition using correlation strength’. BMVC, Aberystwyth, UK., 2010, pp. 111.
    97. 97)
      • 5. Makihara, Y., Mannami, H., Tsuji, A., et al: ‘The OU-ISIR gait database comprising the treadmill dataset’, IPSJ Trans. Comput. Vis. Appl., 2012, 4, pp. 5362.
    98. 98)
      • 91. Yang, J., Yang, J.Y.: ‘Why can LDA be performed in PCA transformed space?’, Pattern Recognit., 2003, 36, (2), pp. 563566.
    99. 99)
      • 64. Shiraga, K., Makihara, Y., Muramatsu, D., et al: ‘GEINet: view-invariant gait recognition using a convolutional neural network’. 2016 Int. Conf. on Biometrics (ICB), Halmstad, Sweden, 2016, pp. 18.
    100. 100)
      • 45. Goffredo, M., Bouchrika, I., Carter, J.N., et al: ‘Self-calibrating view-invariant gait biometrics’, IEEE Trans. Syst. Man Cybern. B, Cybern., 2009, 40, (4), pp. 9971008.
    101. 101)
      • 102. Li, C., Min, X., Sun, S., et al: ‘DeepGait: a learning deep convolutional representation for view-invariant gait recognition using joint Bayesian’, Appl. Sci., 2017, 7, (3), p. 210.
    102. 102)
      • 84. Kusakunniran, W., Wu, Q., Zhang, J., et al: ‘A new view-invariant feature for cross-view gait recognition’, IEEE Trans. Inf. Forensics Sec., 2013, 8, (10), pp. 16421653.
    103. 103)
      • 43. Wang, L., Ning, H., Tan, T., et al: ‘Fusion of static and dynamic body biometrics for gait recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 149158.
    104. 104)
      • 100. Yao, L., Kusakunniran, W., Wu, Q., et al: ‘Robust CNN-based gait verification and identification using skeleton gait energy image’. 2018 Digital Image Computing: Techniques and Applications (DICTA), Canberra, Australia, 2018, pp. 17.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2020.0103
Loading

Related content

content/journals/10.1049/iet-bmt.2020.0103
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address