access icon free Gait biometrics: investigating the use of the lower inner regions for people identification from landmark frames

The recent technological advances in surveillance, forensic and biometric systems to deter or even reduce the increasing number of crimes and prevent them is still questionable. The use of gait biometrics has attracted unprecedented interest due to its capability to work with low-resolution footage recorded from a distance. In contrast to mainstream research on gait biometrics which uses holistic silhouette features, the authors investigate the use of the bottom dynamic section within the human body to derive the most discriminative features for gait recognition. A new descriptor based on 7 Hu's moments is proposed describing the inner lower limb regions between the limbs being extracted only from landmark frames within one gait cycle. In order to assess the discriminatory potency of gait features from the lower regions for people identification, a number of experiments are conducted on the CASIA-B gait database to investigate the recognition rates using the KNN classifier and deep learning. The comparative analysis is performed against well-established research studies which were tested on the CASIA-B data set. The obtained results confirm the consistency of features extracted from the lower regions for gait recognition even under the impact of various factors.

Inspec keywords: law administration; gait analysis; image resolution; feature extraction; terrorism; learning (artificial intelligence); biometrics (access control); neural nets

Other keywords: gait recognition; gait biometrics; landmark frames; people identification; holistic silhouette features; biometric systems; inner lower limb regions; gait cycle; CASIA-B gait database; low-resolution footage

Subjects: Public administration; Optical, image and video signal processing; Computer vision and image processing techniques; Neural computing techniques

References

    1. 1)
      • 6. Veres, G.V., Gordon, L., Carter, J.N., et al: ‘What image information is important in silhouette-based gait recognition?’. Proc. 2004 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2004 (CVPR 2004), Washington, DC, USA., 2004, vol. 2.
    2. 2)
      • 3. Matovski, D.S., Nixon, M.S., Mahmoodi, S., et al: ‘The effect of time on gait recognition performance’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (2), pp. 543552.
    3. 3)
      • 52. Kusakunniran, W., Wu, Q., Li, H., et al: ‘Multiple views gait recognition using view transformation model based on optimized gait energy image’. 2009 IEEE 12th Int. Conf. on Computer Vision Workshops (ICCV Workshops), Kyoto, Japan, 2009, pp. 10581064.
    4. 4)
      • 33. Luo, J., Tang, J., Tjahjadi, T., et al: ‘Robust arbitrary view gait recognition based on parametric 3d human body reconstruction and virtual posture synthesis’, Pattern Recognit., 2016, 60, pp. 361377.
    5. 5)
      • 44. Babaee, M., Li, L., Rigoll, G.: ‘Gait recognition from incomplete gait cycle’. 2018 25th IEEE Int. Conf. on Image Processing (ICIP), Athens, Greece, 2018, pp. 768772.
    6. 6)
      • 24. Kusakunniran, W.: ‘Recognizing gaits on spatio-temporal feature domain’, IEEE Trans. Inf. Forensics Sec., 2014, 9, (9), pp. 14161423.
    7. 7)
      • 9. Connor, P., Ross, A.: ‘Biometric recognition by gait: A survey of modalities and features’, Comput. Vis. Image Underst., 2018, 167, pp. 127.
    8. 8)
      • 16. Iwama, H., Okumura, M., Makihara, Y., et al: ‘The ou-isir gait database comprising the large population dataset and performance evaluation of gait recognition’, IEEE Trans. Inf. Forensics Sec., 2012, 7, (5), pp. 15111521.
    9. 9)
      • 38. Shahrum.Md.Guntor, M., Sahak, R., Zabidi, A., et al: ‘Convolutional neural network (CNN) based gait recognition system using microsoft kinect skeleton features’, Int. J. Eng. Technol.(UAE), 2018, 7, pp. 202205.
    10. 10)
      • 15. Han, J., Bhanu, B.: ‘Individual recognition using gait energy image’, IEEE Trans. Pattern Anal. Mach. Intell., 2006, 28, (2), pp. 316322.
    11. 11)
      • 14. Sarkar, S., Phillips, P.J., Liu, Z., et al: ‘The humanID gait challenge problem: data sets, performance, and analysis’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (2), pp. 162177.
    12. 12)
      • 46. Hu, M.K.: ‘Visual pattern recognition by moment invariants’, IRE Trans. Inf. Theory, 1962, 8, (2), pp. 179187.
    13. 13)
      • 23. Sivapalan, S., Chen, D., Denman, S., et al: ‘Gait energy volumes and frontal gait recognition using depth images’. 2011 Int. Joint Conf. on Biometrics (IJCB), Washington, DC, USA., 2011, pp. 16.
    14. 14)
      • 39. Cao, Z., Simon, T., Wei, S.E., et al: ‘Realtime multi-person 2d pose estimation using part affinity fields’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Honolulu, HI, USA., 2017, pp. 72917299.
    15. 15)
      • 20. Rida, I., Almaadeed, S., Bouridane, A.: ‘Gait recognition based on modified phase only correlation’, Signal. Image. Video. Process., 2016, 10, (3), pp. 463470.
    16. 16)
      • 43. Zhang, X., Fan, G.: ‘Joint gait-pose manifold for video-based human motion estimation’. Computer Vision and Pattern Recognition (CVPR) 2011 Workshops, Colorado Springs, CO, USA., 2011, pp. 4754.
    17. 17)
      • 2. Bouchrika, I., Nixon, M.S.: ‘Exploratory factor analysis of gait recognition’. 2008. FG'08. Eighth IEEE Int. Conf. on Automatic Face & Gesture Recognition, Amsterdam, Netherlands, 2008, pp. 16.
    18. 18)
      • 8. Hadid, A., Ghahramani, M., Kellokumpu, V., et al: ‘Can gait biometrics be spoofed?’. 2012 21st Int. Conf. on Pattern Recognition (ICPR), Tsukuba, Japan, 2012, pp. 32803283.
    19. 19)
      • 5. Jia, N., Sanchez, V., Li, C.T.: ‘On view-invariant gait recognition: a feature selection solution’, IET Biometrics, 2018, 7, (4), pp. 287295.
    20. 20)
      • 17. Lam, T.H., Lee, R.S.: ‘A new representation for human gait recognition: motion silhouettes image (MSI)’. Int. Conf. on Biometrics, 2006, pp. 612618.
    21. 21)
      • 32. Yang, K., Dou, Y., Lv, S., et al: ‘Relative distance features for gait recognition with kinect’, J. Vis. Commun. Image Represent., 2016, 39, pp. 209217.
    22. 22)
      • 28. Ariyanto, G., Nixon, M.S.: ‘Marionette mass-spring model for 3d gait biometrics’. Fifth Int. Conf. on Biometrics, New Delhi, India, 2012, pp. 354359.
    23. 23)
      • 21. Chao, H., He, Y., Zhang, J., et al: ‘Gaitset: regarding gait as a set for cross view gait recognition’. Proc. of the AAAI Conf. on Artificial Intelligence, Honolulu, HI, USA., 2019, vol. 33, pp. 81268133.
    24. 24)
      • 50. Rida, I., Jiang, X., Marcialis, G.L.: ‘Human body part selection by group lasso of motion for model-free gait recognition’, IEEE Signal Process. Lett., 2016, 23, (1), pp. 154158.
    25. 25)
      • 34. Ye, M., Zhang, Q., Wang, L., et al: ‘A survey on human motion analysis from depth data’. Time-of-flight and Depth Imaging, Sensors, Algorithms, and Applications, Saarbrücken, Germany, 2013, pp. 149187.
    26. 26)
      • 7. Hadid, A., Ghahramani, M., Bustard, J., et al: ‘Improving gait biometrics under spoofing attacks’. Image Analysis and Processing 2013, Naples, Italy, 2013, pp. 110.
    27. 27)
      • 10. Wan, C., Wang, L., Phoha, V.V.: ‘A survey on gait recognition’, ACM Comput. Surv. (CSUR), 2018, 51, (5), p. 89.
    28. 28)
      • 37. Zhang, P., Lan, C., Xing, J., et al: ‘View adaptive recur rent neural networks for high performance human action recognition from skeleton data’. Proc. IEEE Int. Conf. on Computer Vision, Venice, Italy, 2017, pp. 21172126.
    29. 29)
    30. 30)
      • 42. Ding, M., Fan, G.: ‘Multilayer joint gait-pose manifolds for human gait motion modeling’, IEEE Trans. Cybern., 2014, 45, (11), pp. 24132424.
    31. 31)
      • 51. Bashir, K., Xiang, T., Gong, S.: ‘Gait recognition without subject cooperation’, Pattern Recognit. Lett., 2010, 31, (13), pp. 20522060.
    32. 32)
      • 19. Hayfron Acquah, J.B., Nixon, M.S., Carter, J.N.: ‘Automatic gait recognition by symmetry analysis’, Pattern Recognit. Lett., 2003, 24, (13), pp. 21752183.
    33. 33)
      • 45. Whittle, M.: ‘Gait analysis: an Introduction’ (Butterworth-Heinemann, UK., 2002).
    34. 34)
      • 11. Bouchrika, I.: ‘A survey of using biometrics for smart visual surveillance: gait recognition’. Surveillance in Action, 2018, pp. 323.
    35. 35)
      • 1. Braun, T., Fung, B.C., Iqbal, F., et al: ‘Security and privacy challenges in smart cities’, Sust. Cities Soc., 2018, 39, pp. 499507.
    36. 36)
      • 22. Liu, W., Zhang, C., Ma, H., et al: ‘Learning efficient spatial-temporal gait features with deep learning for human identification’, Neuroinformatics, 2018, 16, (3–4), pp. 457471.
    37. 37)
      • 26. Rashwan, H.A., García, M.Á., Chambon, S., et al: ‘Gait representation and recognition from temporal co-occurrence of flow fields’, Mach. Vis. Appl., 2019, 30, (1), pp. 139152.
    38. 38)
      • 41. Lin, T.Y., Maire, M., Belongie, S., et al: ‘Microsoft coco: common objects in context’. European Conf. On Computer Vision, Zurich, Switzerland, 2014, pp. 740755.
    39. 39)
      • 25. Mahfouf, Z., Merouani, H.F., Bouchrika, I., et al: ‘Investigating the use of motion-based features from optical flow for gait recognition’, Neurocomputing, 2018, 283, pp. 140149.
    40. 40)
      • 13. Nixon, M.S., Tan, T.N., Chellappa, R.: ‘Human identification based on gait’ (Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005).
    41. 41)
      • 53. Jeevan, M., Jain, N., Hanmandlu, M., et al: ‘Gait recognition based on gait pal and pal entropy image’. 2013 20th IEEE Int. Conf. on Image Processing (ICIP), Melbourne, Australia, 2013, pp. 41954199.
    42. 42)
      • 12. Rida, I., Almaadeed, N., Almaadeed, S.: ‘Robust gait recognition: a comprehensive survey’, IET Biometrics, 2018, 8, (1), pp. 1428.
    43. 43)
      • 27. Yam, C.Y., Nixon, M.: ‘Gait recognition, model-based’, In: Li, S., Jain, A. (eds.) ‘Encyclopedia of biometrics’ (Springer, USA., 2009), pp. 633639.
    44. 44)
      • 48. Medikonda, J., Madasu, H., Panigrahi, B.: ‘Information set based gait authentication system’, Neurocomputing, 2016, 207, pp. 114.
    45. 45)
      • 49. Tang, J., Luo, J., Tjahjadi, T., et al: ‘2.5 d multi-view gait recognition based on point cloud registration’, Sensors, 2014, 14, (4), pp. 61246143.
    46. 46)
      • 31. Choi, S., Kim, J., Kim, W., et al: ‘Skeleton-based gait recognition via robust frame-level matching’, IEEE Trans. Inf. Forensics Sec., 2019, 14, pp. 25772592.
    47. 47)
      • 4. Verlekar, T.T., Correia, P.L., Soares, L.D.: ‘View-invariant gait recognition system using a gait energy image decomposition method’, IET Biometrics, 2017, 6, (4), pp. 299306.
    48. 48)
      • 47. Yu, S., Tan, D., Tan, T.: ‘A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition’. Proc. Int. Conf. on Pattern Recognition, Hong Kong, People's Republic of China, 2006, vol. 4, pp. 441444.
    49. 49)
      • 30. Bekhouch, A., Bouchrika, I., Doghmane, N.: ‘Exploring the use of the lower part of the legs for people identification’. 2018 Int. Conf. on Signal, Image, Vision and their Applications (SIVA), Guelma, Algeria, 2018, pp. 16.
    50. 50)
      • 40. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:14091556, 2014.
    51. 51)
      • 35. Du, Y., Wang, W., Wang, L.: ‘Hierarchical recurrent neural network for skeleton based action recognition’. Proc. IEEE Conf. on Computer Vision and Pattern Recognition, Boston, MA, USA., 2015, pp. 11101118.
    52. 52)
      • 18. Bashir, K., Xiang, T., Gong, S.: ‘Gait recognition using gait entropy image’. 3rd Int. Conf. on Crime Detection and Prevention, 2009, pp. 16.
    53. 53)
      • 36. Niepert, M., Ahmed, M., Kutzkov, K.: ‘Learning convolutional neural networks for graphs’. Int. Conf. on machine learning, New York, NY, USA., 2016, pp. 20142023.
    54. 54)
      • 29. Tang, J., Luo, J., Tjahjadi, T., et al: ‘Robust arbitrary-view gait recognition based on 3d partial similarity matching’, IEEE Trans. Image Process., 2017, 26, (1), pp. 722.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2020.0001
Loading

Related content

content/journals/10.1049/iet-bmt.2020.0001
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading