Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Computational workload in biometric identification systems: an overview

The computational workload is one of the key challenges in biometric identification systems. The naïve retrieval method based on an exhaustive search becomes impractical with the growth of the number of the enrolled data subjects. Consequently, in recent years, many methods with the aim of reducing or optimising the computational workload, and thereby speeding-up the identification transactions, in biometric identification systems have been developed. In this article, taxonomy for conceptual categorisation of such methods is presented, followed by a comprehensive survey of the relevant academic publications, including computational workload reduction and software/hardware-based acceleration. Lastly, the pertinent technical considerations and trade-offs of the surveyed methods are discussed, along with an industry perspective, and open issues/challenges in the field.

References

    1. 1)
      • 34. Uhl, A., Marcel, S., Busch, C., et al: ‘Handbook of vascular biometrics’ (Springer, USA, 2020). forthcoming.
    2. 2)
      • 90. Chaari, A., Lelandais, S., Ahmed, M.B.: ‘A pruning approach improving face identification systems’. Int. Conf. on Advanced Video and Signal Based Surveillance, Boston, USA, 2009, pp. 8590.
    3. 3)
      • 167. García, G.J., Jara, C.A., Pomares, J., et al: ‘A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing’, Sensors, 2014, 14, (4), pp. 62476278.
    4. 4)
      • 47. Paulino, A.A., Liu, E., Cao, K., et al: ‘Latent fingerprint indexing: fusion of level 1 and level 2 features’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2013, pp. 18.
    5. 5)
      • 82. Zhou, Y., Liu, Y., Feng, Q., et al: ‘Palm-vein classification based on principal orientation features’, PLOS One, 2014, 9, (11), pp. 112.
    6. 6)
      • 15. ISO/IEC JTC1 SC37 Biometrics: ‘ISO/IEC 2382-37:2017. Information technology – vocabulary – part 37: biometrics’ (International Organization for Standardization, 2017).
    7. 7)
      • 87. Iloanusi, O.N., Gyaourova, A., Ross, A.: ‘Indexing fingerprints using minutiae quadruplets’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Colorado Springs, USA, 2011, pp. 127133.
    8. 8)
      • 109. Aggarwal, C.C., Reddy, C.K.: ‘Data clustering: algorithms and applications’ (Chapman & Hall/CRC, USA, 2013).
    9. 9)
      • 112. Mehrotra, H., Srinivas, B.G., Majhi, B.: ‘Indexing iris biometric database using energy histogram of DCT subbands’, J. Commun. Comput. Inf. Sci., 2009, 40, pp. 194204.
    10. 10)
      • 177. Mittal, S., Vetter, J.S.: ‘A survey of CPU-GPU heterogeneous computing techniques’, Comput. Surv., 2015, 47, (4), pp. 135.
    11. 11)
      • 29. Li, S.Z., Jain, A.K.: ‘Encyclopedia of biometrics’ (Springer, USA, 2015).
    12. 12)
      • 62. Billeb, S., Rathgeb, C., Buschbeck, M., et al: ‘Efficient two-stage speaker identification based on universal background models’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2014, pp. 16.
    13. 13)
      • 25. Abbasifard, M.R., Ghahremani, B., Naderi, H.: ‘A survey on nearest neighbor search methods’, Int. J. Comput. Appl., 2014, 95, (25), pp. 3952.
    14. 14)
      • 151. Damer, N., Terhörst, P., Braun, A., et al: ‘Efficient, accurate, and rotation-invariant iris code’, Signal Process. Lett., 2017, 24, (8), pp. 12331237.
    15. 15)
      • 196. Simmhan, Y., Shukla, A., Verma, A.: ‘Benchmarking fast-data platforms for the Aadhaar biometric database’. Big Data Benchmarking, Potsdam, Germany, 2015, pp. 2139.
    16. 16)
      • 165. Andina, J.J.R., De la Torre Arnanz, E., Valdes, M.D.: ‘FPGAs: fundamentals, advanced features, and applications in industrial electronics’ (CRC Press, USA, 2017).
    17. 17)
      • 35. Proença, H., Neves, J.C.: ‘Security’, in Rathgeb, C., Busch, C. (Eds.): ‘Iris and Periocular Recognition’ (Institution of Engineering and Technology, UK, 2017), pp. 101124.
    18. 18)
      • 116. Rathgeb, C., Breitinger, F., Baier, H., et al: ‘Towards bloom filter-based indexing of iris biometric data’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 422429.
    19. 19)
      • 169. Rakvic, R.N., Ulis, B.J., Broussard, R.P., et al: ‘Parallelizing iris recognition’, Trans. Inf. Forensics Secur., 2009, 4, (4), pp. 812823.
    20. 20)
      • 92. Mukherjee, R., Ross, A.: ‘Indexing iris images’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 13.
    21. 21)
      • 180. Li, X., Zhang, G., Huang, H.H., et al: ‘Performance analysis of GPU-based convolutional neural networks’. Int. Conf. on Parallel Processing (ICPP), Philadelphia, USA, 2016, pp. 6776.
    22. 22)
      • 64. Iqbal, A., Namboodiri, A.: ‘Cascaded filtering for fingerprint identification using random projections’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Rhode Island, 2012, pp. 7782.
    23. 23)
      • 163. Saegusa, T., Maruyama, T., Yamaguchi, Y.: ‘How fast is an FPGA in image processing?’. Int. Conf. on Field Programmable Logic and Applications, Heidelberg, Germany, 2008, pp. 7782.
    24. 24)
      • 138. Knuth, D.: ‘Sorting and searching’, Art Comput. Program., (Addison-Wesley, USA, 1998), 3.
    25. 25)
      • 73. Heindl, R.: ‘Daktyloskopie’ (W. de Gruyter & Company, Germany, 1927).
    26. 26)
      • 96. Mhatre, A.J., Palla, S., Chikkerur, S., et al: ‘Efficient search and retrieval in biometric databases’. Biometric Technology for Human Identification II, Orlando, USA, 2005, vol. 5779, pp. 265274.
    27. 27)
      • 95. Raghavendra, R., Surbiryala, J., Busch, C.: ‘An efficient finger vein indexing scheme based on unsupervised clustering’. Int. Conf. on Identity, Security and Behavior Analysis (ISBA), Hong Kong, 2015, pp. 18.
    28. 28)
      • 100. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models’, Knowl.-Based Syst., 2015, 81, pp. 7697.
    29. 29)
      • 7. European Union Agency for the Operational Management of Large-Scale IT Systems in the Area of Freedom, Security and Justice: ‘Eurodac storage capacity increased’, eu-LISA, 2016. Available at: https://www.eulisa.europa.eu/Newsroom/News/Pages/Eurodacstorage-capacity-increased.aspx, accessed 11 6 2019.
    30. 30)
      • 38. Ratha, N.K., Karu, K., Chen, S., et al: ‘A real-time matching system for large fingerprint databases’, Trans. Pattern Anal. Mach. Intell., 1996, 18, (8), pp. 799813.
    31. 31)
      • 186. Rife, D.C.: ‘Finger prints as criteria of ethnic relationship’, Am. J. Hum. Genet., 1953, 5, (4), p. 389.
    32. 32)
      • 31. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, UK, 2009).
    33. 33)
      • 127. He, S., Zhang, C., Hao, P.: ‘Comparative study of features for fingerprint indexing’. Int. Conf. on Image Processing (ICIP), Cairo, Egypt, 2009, pp. 27492752.
    34. 34)
      • 13. European Union: ‘Regulation (EU) 2017/2226 of the European Parliament and of the Council’, Official Journal of the European Union, 2017. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R2226, accessed 11 6 2019.
    35. 35)
      • 156. Drozdowski, P., Rathgeb, C., Hofbauer, H., et al: ‘Towards pre-alignment of near-infrared iris images’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 359366.
    36. 36)
      • 135. Jayaraman, U., Gupta, P.: ‘Iris code hashing’. Int. Conf. on Communications (ICC), Budapest, Hungary, 2013, pp. 21232127.
    37. 37)
      • 110. Mansukhani, P., Tulyakov, S., Govindaraju, V.: ‘A framework for efficient fingerprint identification using a minutiae tree’, Syst. J., 2010, 4, (2), pp. 126137.
    38. 38)
      • 99. Galton, F.: ‘Fingerprint directories’ (Macmillan and Company, UK, 1895).
    39. 39)
      • 5. Unique Identification Authority of India: ‘Aadhaar dashboard’, UIDAI, 2018. Available at: https://www.uidai.gov.in/aadhaar_dashboard/, accessed 11 6 2019.
    40. 40)
      • 71. Surbiryala, J., Raghavendra, R., Busch, C.: ‘Finger vein indexing based on binary features’. Colour and Visual Computing Symp. (CVCS), Gjøvik, Norway, 2015, pp. 16.
    41. 41)
      • 60. Gentile, J.E., Ratha, N., Connell, J.: ‘An efficient, two-stage iris recognition system’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2009, pp. 211215.
    42. 42)
      • 178. Lastra, M., Gutiérrez, P.D., Benítez, J.M., et al: ‘GPU processing for biometric big data based identification. Why and what for?’, Biostat Biometrics Open Access J., 2017, 2, pp. 14.
    43. 43)
      • 54. Konrad, M., Stögner, H., Uhl, A., et al: ‘Computationally efficient serial combination of rotation-invariant and rotation compensating iris recognition algorithms’. Int. Conf. on Computer Vision Theory and Applications (VISAPP), Angers, France, 2010, vol. 1, pp. 8590.
    44. 44)
      • 118. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Bloom filter-based search structures for indexing and retrieving iris-codes’, IET Biometrics, 2018, 7, pp. 260268.
    45. 45)
      • 207. Cappelli, R., Ferrara, M., Maltoni, D.: ‘FIDXICB-2013’, University of Bologna Biometric System Laboratory, 2013. Available at: https://biolab.csr.unibo.it/fvcongoing/UI/Form/ICB2013FIDX.aspx, accessed 11 6 2019.
    46. 46)
      • 141. Wolfson, H.J., Rigoutsos, I.: ‘Geometric hashing: an overview’, Comput. Sci. Eng., 1997, 4, (4), pp. 1021.
    47. 47)
      • 83. Germain, R.S., Califano, A., Colville, S.: ‘Fingerprint matching using transformation parameter clustering’, Comput. Sci. Eng., 1997, 4, (4), pp. 4249.
    48. 48)
      • 76. Drozdowski, P., Fischer, D., Rathgeb, C., et al: ‘Database binning and retrieval in multi-fingerprint identification systems’. Int. Workshop on Information Forensics and Security (WIFS), Hong Kong, 2018, pp. 17.
    49. 49)
      • 160. Singh, D., Reddy, C.K.: ‘A survey on platforms for big data analytics’, J. Big. Data., 2015, 2, (1), pp. 120.
    50. 50)
      • 28. Rachkovskij, D.A.: ‘Index structures for fast similarity search for real vectors II’, Cybern. Syst. Anal., 2018, 54, (2), pp. 320335.
    51. 51)
      • 174. Bouraoui, H., Jerad, C., Chattopadhyay, A., et al: ‘Hardware architectures for embedded speaker recognition applications: a survey’, Trans. Embedded Comput. Syst., 2017, 16, (3), p. 78.
    52. 52)
      • 103. Qiu, X., Sun, Z., Tan, T.: ‘Global texture analysis of iris images for ethnic classification’, Adv. Biometrics, 2005, 3832, pp. 411418.
    53. 53)
      • 181. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a unified embedding for face recognition and clustering’. Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015, pp. 815823.
    54. 54)
      • 106. Dantcheva, A., Erdogmus, N., Dugelay, J.L.: ‘On the reliability of eye color as a soft biometric trait’. Workshop on Applications of Computer Vision (WACV), Hawaii, USA, 2011, pp. 227231.
    55. 55)
      • 66. Yi, D., Lei, Z., Hu, Y., et al: ‘Fast matching by 2 lines of code for large scale face recognition systems’, arXiv preprint arXiv:13027180, 2013.
    56. 56)
      • 1. Thakkar, D.: ‘Global biometric market analysis: trends and future prospects’, Bayometric, 2018. Available at: https://www.bayometric.com/global-biometric-market-analysis/, accessed 11 6 2019.
    57. 57)
      • 19. Daugman, J.: ‘History of iris recognition’, University of Cambridge – Computer Laboratory, 2019. Available at: https://www.cl.cam.ac.uk/jgd1000/history.html, accessed 11 6 2019.
    58. 58)
      • 4. Unique Identification Authority of India: ‘Role of biometric technology in Aadhaar enrollment’ (UIDAI, India, 2012).
    59. 59)
      • 85. Liu, M., Jiang, X., Kot, A.C.: ‘Efficient fingerprint search based on database clustering’, Pattern Recognit., 2007, 40, (6), pp. 17931803.
    60. 60)
      • 168. Chen, A.T.J., Biglari-Abhari, M., Wang, K.I.K., et al: ‘Convolutional neural network acceleration with hardware/software codesign’, Appl. Intell., 2018, 48, (5), pp. 12881301.
    61. 61)
      • 93. Sun, Z., Zhang, H., Tan, T., et al: ‘Iris image classification based on hierarchical visual codebook’, Trans. Pattern Anal. Mach. Intell., 2014, 36, (6), pp. 11201133.
    62. 62)
      • 2. Bhutani, A., Bhardwaj, P.: ‘Biometrics market size by application’. GMI493 Global Market Insights, 2017.
    63. 63)
      • 21. Chávez, E., Navarro, G., Baeza-Yates, R., et al: ‘Searching in metric spaces’, Comput. Surv., 2001, 33, (3), pp. 273321.
    64. 64)
      • 52. Wang, D., Jain, A.K.: ‘Face retriever: pre-filtering the gallery via deep neural net’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 473480.
    65. 65)
      • 185. Lin, Y., Du, E.Y., Zhou, Z., et al: ‘An efficient parallel approach for sclera vein recognition’, Trans. Inf. Forensics Secur., 2014, 9, (2), pp. 147157.
    66. 66)
      • 78. Yu, L., Zhang, D., Wang, K., et al: ‘Coarse iris classification using box-counting to estimate fractal dimensions’, Pattern Recognit., 2005, 38, (11), pp. 17911798.
    67. 67)
      • 193. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing algorithm on encrypted domain’. Trustcom/BigDataSE/ISPA, Tianjin, China, 2016, pp. 10301037.
    68. 68)
      • 139. Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al: ‘Introduction to algorithms’ (MIT press, USA, 2009).
    69. 69)
      • 148. Xu, H., Veldhuis, R.N.J., Kevenaar, T.A.M., et al: ‘Spectral minutiae: a fixed-length representation of a minutiae set’. Conf. on Computer Vision and Pattern RecognitionWorkshops (CVPRW), Alaska, USA, 2008, pp. 16.
    70. 70)
      • 56. Dey, S., Samanta, D.: ‘Iris data indexing method using Gabor energy features’, Trans. Inf. Forensics Secur., 2012, 7, (4), pp. 11921203.
    71. 71)
      • 162. López, M., Daugman, J., Cantó, E.: ‘Hardware–software co-design of an iris recognition algorithm’, IET Inf. Sec., 2011, 5, (1), pp. 6068.
    72. 72)
      • 114. Jayaraman, U., Prakash, S., Gupta, P.: ‘An efficient color and texture based iris image retrieval technique’, Expert Syst. Appl., 2012, 39, (5), pp. 49154926.
    73. 73)
      • 164. Sirowy, S., Forin, A.: ‘Where's the beef? why FPGAs are so fast’. MSR-TR-2008-130, Microsoft Research, 2008.
    74. 74)
      • 65. Chen, F., Huang, X., Zhou, J.: ‘Hierarchical minutiae matching for fingerprint and palmprint identification’, Trans. Image Process., 2013, 22, (12), pp. 49644971.
    75. 75)
      • 204. Jain, A., Klare, B., Ross, A.: ‘Guidelines for best practices in biometrics research’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 541545.
    76. 76)
      • 84. Ross, A., Mukherjee, R.: ‘Augmenting ridge curves with minutiae triplets for fingerprint indexing’. Biometric Technology for Human Identification IV, Orlando, USA, 2007, vol. 6539, pp. 112.
    77. 77)
      • 208. National Institute of Standards and Technology: ‘Face recognition vendor test (FRVT) 1:N evaluation’, NIST, 2017. Available at: https://www.nist.gov/programs-projects/facerecognition-vendor-test-frvt-1n-2018-evaluation, accessed 11 6 2019.
    78. 78)
      • 125. Gupta, P., Sana, A., Mehrotra, H., et al: ‘An efficient indexing scheme for binary feature based biometric database’. Biometric Technology for Human Identification IV, Orlando, USA, 2007, vol. 6539, pp. 110.
    79. 79)
      • 192. Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable biometrics’, EURASIP J. Inf. Secur., 2011, 2011, pp. 328.
    80. 80)
      • 98. Dantcheva, A., Elia, P., Ross, A.: ‘What else does your biometric data reveal? A survey on soft biometrics’, Trans. Inf. Forensics Secur., 2016, 11, (3), pp. 441467.
    81. 81)
      • 33. Bowyer, K.W., Burge, M.J.: ‘Handbook of iris recognition’ (Springer, UK, 2016).
    82. 82)
      • 36. Schuch, P.: ‘Survey on features for fingerprint indexing’, IET Biometrics, 2019, 8, (1), pp. 113.
    83. 83)
      • 172. Jadhav, M., Nerkar, P.M.: ‘Implementation of an embedded hardware of FVRS on FPGA’. Int. Conf. on Information Processing (ICIP), Québec City, Canada, 2015, pp. 4853.
    84. 84)
      • 144. Drozdowski, P., Struck, F., Rathgeb, C., et al: ‘Benchmarking binarisation schemes for deep face templates’. Int. Conf. on Image Processing (ICIP), Athens, Greece, 2018, pp. 191195.
    85. 85)
      • 199. Daugman, J.: ‘How iris recognition works’, Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    86. 86)
      • 51. Chen, B.C., Chen, Y.Y., Kuo, Y.H., et al: ‘Scalable face image retrieval using attribute-enhanced sparse codewords’, Trans. Multimed., 2013, 15, (5), pp. 11631173.
    87. 87)
      • 48. Gyaourova, A., Ross, A.: ‘A coding scheme for indexing multimodal biometric databases’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Miami, USA, 2009, pp. 9398.
    88. 88)
      • 8. Gemalto: ‘DHS's automated biometric identification system IDENT – the heart of biometric visitor identification in the USA’, Gemalto Case Studies, 2019. Available at: https://www.gemalto.com/govt/customercases/ident-automated-biometric-identification-system, accessed 11 6 2019.
    89. 89)
      • 203. Grother, P., Ngan, M., Hanaoka, K.: ‘Ongoing face recognition vendor test (FRVT) part 2: identification’. NISTIR 8238, National Institute of Standards and Technology, 2018.
    90. 90)
      • 55. Gadde, R.B., Adjeroh, D., Ross, A.: ‘Indexing iris images using the burrows-wheeler transform’. Int. Workshop on Information Forensics and Security (WIFS), Seattle, USA, 2010, pp. 16.
    91. 91)
      • 170. Fons, M., Fons, F., Cantó, E.: ‘Fingerprint image processing acceleration through run-time reconfigurable hardware’, Trans. Circuits Syst. II, Express Briefs, 2010, 57, (12), pp. 991995.
    92. 92)
      • 43. Liang, X., Bishnu, A., Asano, T.: ‘A robust fingerprint indexing scheme using minutia neighborhood structure and low-order Delaunay triangles’, Trans. Inf. Forensics Secur., 2007, 2, (4), pp. 721733.
    93. 93)
      • 6. European Union: ‘Regulation (EU) no 603/2013 of the European Parliament and of the Council’, Off. J. Eur. Union, 2013. Available at: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=celex:32013R0603, accessed 11 6 2019, 56, pp. 130.
    94. 94)
      • 115. Barbu, T., Luca, M.: ‘Content-based iris indexing and retrieval model using spatial acces methods’. Int. Symp. on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 2015, pp. 14.
    95. 95)
      • 39. de Boer, J., Bazen, A.M., Gerez, S.H.: ‘Indexing fingerprint databases based on multiple features’. Annual Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, 2001, pp. 300306.
    96. 96)
      • 134. Rathgeb, C., Uhl, A.: ‘Iris-biometric hash generation for biometric database indexing’. Int. Conf. on Pattern Recognition (ICPR), Istanbul, Turkey, 2010, pp. 28482851.
    97. 97)
      • 200. Gorodnichy, D.O., Chumakov, M.P.: ‘Analysis of the effect of ageing, age, and other factors on iris recognition performance using NEXUS scores dataset’, IET Biometrics, 2019, 8, (1), pp. 2939.
    98. 98)
      • 86. Biswas, S., Ratha, N.K., Aggarwal, G., et al: ‘Exploring ridge curvature for fingerprint indexing’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2008, pp. 16.
    99. 99)
      • 166. Tessier, R., Pocek, K., DeHon, A.: ‘Reconfigurable computing architectures’, Proc. IEEE, 2015, 103, (3), pp. 332354.
    100. 100)
      • 10. Consortium for Elections and Political Process Strengthening: ‘Assessment of electoral preparations in the Democratic Republic of the Congo’, CEPPS, 2018.
    101. 101)
      • 14. European Commission: ‘Smart borders’, EU Migration and Home Affairs, 2018. Available at: https://ec.europa.eu/homeaffairs/what-we-do/policies/borders-and-visas/smartborders_en, accessed 11 6 2019.
    102. 102)
      • 201. Komarinski, P.: ‘Automated fingerprint identification systems (AFIS)’ (Elsevier, USA, 2005).
    103. 103)
      • 68. Ross, A., Sunder, M.S.: ‘Block based texture analysis for iris classification and matching’. Conf. on Computer Vision and Pattern Recognition – Workshops (CVPRW), San Francisco, USA, 2010, pp. 3037.
    104. 104)
      • 105. Singh, M., Nagpal, S., Vatsa, M., et al: ‘Gender and ethnicity classification of iris images using deep class-encoder’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 666673.
    105. 105)
      • 159. Berten Digital Signal Processing: ‘GPU vs FPGA performance comparison’. BWP001 v1.0, Berten DSP, 2016.
    106. 106)
      • 41. Feng, J., Cai, A.: ‘Fingerprint indexing using ridge invariants’. Int. Conf. on Pattern Recognition (ICPR), Hong Kong, 2006, vol. 4, pp. 433436.
    107. 107)
      • 94. Nalla, P.R., Chalavadi, K.M.: ‘Iris classification based on sparse representations using on-line dictionary learning for large-scale de-duplication applications’, SpringerPlus, 2015, 4, (1), pp. 238248.
    108. 108)
      • 111. Dewangan, J., Dey, S., Samanta, D.: ‘Face images database indexing for person identification problem’, Int. J. Biometrics Bioinf., 2013, 7, (2), pp. 93122.
    109. 109)
      • 197. Al-Raisi, A.N., Al-Khouri, A.M.: ‘Iris recognition and the challenge of homeland and border control security in UAE’, Telemat. Inform., 2008, 25, (2), pp. 117132.
    110. 110)
      • 158. Singh, M., Singh, R., Ross, A.: ‘A comprehensive overview of biometric fusion’, Inf. Fusion, 2019, 52, pp. 187205.
    111. 111)
      • 3. Markets and Markets: ‘Biometric system market by authentication type – global forecast to 2023’. SE 3449, Markets and Markets, 2018.
    112. 112)
      • 132. Kaushik, V.D., Umarani, J., Gupta, A.K., et al: ‘An efficient indexing scheme for face database using modified geometric hashing’, Neurocomputing, 2013, 116, pp. 208221.
    113. 113)
      • 12. Department of Homeland Security: ‘DHS/ALL-041 external biometric records (EBR) system of records’, Federal Register, 2018. Available at: https://www.regulations.gov/docket?D=DHS-2017-0039, accessed 11 6 2019.
    114. 114)
      • 126. Shuai, X., Zhang, C., Hao, P.: ‘Fingerprint indexing based on composite set of reduced SIFT features’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 14.
    115. 115)
      • 195. Wang, Y., Wan, J., Guo, J., et al: ‘Inference-based similarity search in randomized Montgomery domains for privacy-preserving biometric identification’, Trans. Pattern Anal. Mach. Intell., 2018, 40, (7), pp. 16111624.
    116. 116)
      • 140. Lamdan, Y., Wolfson, H.J.: ‘Geometric hashing: a general and efficient model-based recognition scheme’. Int. Conf. on Computer Vision (ICCV), Tampa, USA, 1988, pp. 238249.
    117. 117)
      • 50. Mohanty, P., Sarkar, S., Kasturi, R., et al: ‘Subspace approximation of face recognition algorithms: an empirical study’, Trans. Inf. Forensics Secur., 2008, 3, (4), pp. 734748.
    118. 118)
      • 128. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Fingerprint indexing based on minutia cylinder-code’, Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 10511057.
    119. 119)
      • 183. Ghafoor, M., Iqbal, S., Tariq, S.A., et al: ‘Efficient fingerprint matching using GPU’, IET Image Process., 2018, 12, (2), pp. 274284.
    120. 120)
      • 53. Wang, D., Otto, C., Jain, A.K.: ‘Face search at scale’, Trans. Pattern Anal. Mach. Intell., 2017, 39, (6), pp. 11221136.
    121. 121)
      • 189. Nandakumar, K., Jain, A.K.: ‘Biometric template protection: bridging the performance gap between theory and practice’, Signal Process. Mag., 2015, 32, (5), pp. 88100.
    122. 122)
      • 188. Federal Bureau of Investigation: ‘The science of fingerprints: classification and uses’ (General Press, USA, 2013).
    123. 123)
      • 24. Wang, J., Shen, H.T., Song, J., et al: ‘Hashing for similarity search: a survey’, arXiv preprint arXiv:14082927, 2014, pp. 129.
    124. 124)
      • 176. Stone, J.E., Gohara, D., Shi, G.: ‘OpenCL: a parallel programming standard for heterogeneous computing systems’, Comput. Sci. Eng., 2010, 12, (3), pp. 6673.
    125. 125)
      • 77. Park, U., Liao, S., Klare, B., et al: ‘Face finder: filtering a large face database using scars, marks and tattoos’. MSU-CSE-11-15, Michigan State University, 2011.
    126. 126)
      • 182. Vandal, N.A., Savvides, M.: ‘CUDA accelerated iris template matching on graphics processing units (GPUs)’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2010, pp. 17.
    127. 127)
      • 91. Klare, B.F., Blanton, A., Klein, B.: ‘Efficient face retrieval using synecdoches’. Int. Joint Conf. on Biometrics (IJCB), Clearwater, USA, 2014, pp. 17.
    128. 128)
      • 117. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Multi-iris indexing and retrieval: fusion strategies for Bloom filter-based search structures’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 4653.
    129. 129)
      • 152. Lim, M.H., Teoh, A.B.J., Kim, J.: ‘Biometric feature-type transformation: making templates compatible for secret protection’, IEEE Signal Process. Mag., 2015, 32, (5), pp. 7787.
    130. 130)
      • 74. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: ‘The best bits in an iris code’, Trans. Pattern Anal. Mach. Intell., 2009, 31, (6), pp. 964973.
    131. 131)
      • 40. Bhanu, B., Tan, X.: ‘Fingerprint indexing based on novel features of minutiae triplets’, Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 616622.
    132. 132)
      • 130. Wang, Y., Wang, L., Cheung, Y.M., et al: ‘Learning compact binary codes for hash-based fingerprint indexing’, Trans. Inf. Forensics Secur., 2015, 10, (8), pp. 16031616.
    133. 133)
      • 198. Daugman, J., Malhas, I.: ‘Iris recognition border-crossing system in the UAE’, Int. Airpt. Rev., 2004, 8, (2), pp. 15.
    134. 134)
      • 20. Gionis, A., Indyk, P., Motwani, R.: ‘Similarity search in high dimensions via hashing’. Int. Conf. on Very Large Data Bases (VLDB), Morgan Kaufmann, 1999, pp. 518529.
    135. 135)
      • 143. Schlett, T., Rathgeb, C., Busch, C.: ‘A binarization scheme for face recognition based on multi-scale block local binary patterns’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2016, pp. 14.
    136. 136)
      • 133. Mehrotra, H., Majhi, B., Gupta, P.: ‘Robust iris indexing scheme using geometric hashing of sift keypoints’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 300313.
    137. 137)
      • 63. Pflug, A., Rathgeb, C., Scherhag, U., et al: ‘Binarization of spectral histogram models: an application to efficient biometric identification’. Int. Conf. on Cybernetics (CYBCONF), Gdynia, Poland, 2015, pp. 501506.
    138. 138)
      • 154. Cappelli, R., Ferrara, M., Maio, D.: ‘Candidate list reduction based on the analysis of fingerprint indexing scores’, Trans. Inf. Forensics Secur., 2011, 6, (3), pp. 11601164.
    139. 139)
      • 123. Wang, K., Yang, L., Su, K., et al: ‘Binary search path of vocabulary tree based finger vein image retrieval’. Int. Conf. on Biometrics (ICB), Halmstad, Sweden, 2016, pp. 18.
    140. 140)
      • 175. Nickolls, J., Buck, I., Garland, M., et al: ‘Scalable parallel programming with CUDA’. SIGGRAPH Classes, Los Angeles, USA, 2008, pp. 4253.
    141. 141)
      • 179. Barrus, J.: ‘Cloud TPU machine learning accelerators now available in beta’, Google, 2018. Available at: https://cloud.google.com/blog/products/gcp/cloud-tpu-machine-learningaccelerators-now-available-in-beta, accessed 11 6 2019.
    142. 142)
      • 27. Rachkovskij, D.A.: ‘Index structures for fast similarity search for real-valued vectors I’, Cybern. Syst. Anal., 2018, 54, (1), pp. 152164.
    143. 143)
      • 79. Puhan, N.B., Sudha, N.: ‘A novel iris database indexing method using the iris color’. Conf. on Industrial Electronics and Applications, Singapore, 2008, pp. 18861891.
    144. 144)
      • 59. Wu, Z., Ke, Q., Sun, J., et al: ‘Scalable face image retrieval with identity-based quantization and multi-reference re-ranking’. Conf. on. Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, 2010, pp. 34693476.
    145. 145)
      • 171. Stekas, N., van den Heuvel, D.: ‘Face recognition using local binary patterns histograms (LBPH) on an FPGA-based system on chip (SoC)’. Int. Parallel and Distributed Processing Symp. Workshops (IPDPSW), Chicago, USA, 2016, pp. 300304.
    146. 146)
      • 49. Gyaourova, A., Ross, A.: ‘Index codes for multibiometric pattern retrieval’, Trans. Inf. Forensics Secur., 2012, 7, (2), pp. 518529.
    147. 147)
      • 57. Kavati, I., Prasad, M.V.N.K., Bhagvati, C.: ‘Vein pattern indexing using texture and hierarchical decomposition of Delaunay triangulation’. Int. Symp. on Security in Computing and Communication, Mysore, India, 2013, pp. 213222.
    148. 148)
      • 191. ISO/IEC JTC1 SC27 IT Security techniques: ‘ISO/IEC 24745:2011. Information technology – security techniques – biometric information protection’ (International Organization for Standardization, 2011).
    149. 149)
      • 70. Rathgeb, C., Uhl, A., Wild, P.: ‘Incremental iris recognition: a single-algorithm serial fusion strategy to optimize time complexity’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2010.
    150. 150)
      • 122. Jayaraman, U., Prakash, S., Gupta, P.: ‘Indexing multimodal biometric databases using kd-tree with feature level fusion’. Int. Conf. on Information Systems Security, Ystad, Sweden, 2008, pp. 221234.
    151. 151)
      • 72. Henry, E.R.: ‘Classification and uses of finger prints’ (HM Stationery Office, UK, 1900).
    152. 152)
      • 137. Badrinath, G.S., Gupta, P., Mehrotra, H.: ‘Score level fusion of voting strategy of geometric hashing and SURF for an efficient palmprint-based identification’, J. Real-Time Image Process., 2013, 8, (3), pp. 265284.
    153. 153)
      • 161. Rathgeb, C., Buchmann, N., Hofbauer, H., et al: ‘Methods for accuracy-preserving acceleration of large-scale comparisons in CPU-based iris ecognition systems’, IET Biometrics, 2018, 7, (4), pp. 356364.
    154. 154)
      • 102. Wayman, J.L.: ‘Multifinger penetration rate and ROC variability for automatic fingerprint identification systems’, in Ratha, N., Bolle, R. (Eds.): ‘Automatic fingerprint recognition systems’ (Springer, USA, 2004), pp. 305316.
    155. 155)
      • 9. Federal Bureau of Investigation: ‘CODIS – NDIS statistics’, FBI, 2018. Available at: https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics, accessed 11 6 2019.
    156. 156)
      • 205. Murphy, T.M., Broussard, R., Rakvic, R., et al: ‘Use of synthetic data to test biometric algorithms’, J. Electron. Imaging, 2016, 25, (4), p. 043023.
    157. 157)
      • 147. Jain, A.K., Prabhakar, S., Hong, L., et al: ‘Filterbank-based fingerprint matching’, Trans. Image Process., 2000, 9, (5), pp. 846859.
    158. 158)
      • 119. Damer, N., Terhörst, P., Braun, A., et al: ‘Indexing of single and multiinstance iris data based on LSH-forest and rotation invariant representation’. Int. Conf. on Computer Analysis of Images and Patterns (CAIP), Ystad, Sweden, 2017, pp. 190201.
    159. 159)
      • 121. Proença, H.: ‘Iris biometrics: indexing and retrieving heavily degraded data’, Trans. Inf. Forensics Secur., 2013, 8, (12), pp. 19751985.
    160. 160)
      • 113. Khalaf, E.T., Mohammed, M., Moorthy, K.: ‘Robust partitioning and indexing for iris biometric database based on local features’, IET Biometrics, 2018, 7, (6), pp. 589597.
    161. 161)
      • 184. Yi, S., Yoon, I., Oh, C., et al: ‘Real-time integrated face detection and recognition on embedded GPGPUs’. Symp. on Embedded Systems for Real-time Multimedia (ESTIMedia), Montreal, Canada, 2014, pp. 98107.
    162. 162)
      • 81. Palla, S., Chikkerur, S., Govindaraju, V., et al: ‘Classification and indexing in large biometric databases’. Biometrics Consortium Conf., New York, USA, 2004, pp. 13.
    163. 163)
      • 129. Yuan, B., Su, F., Cai, A.: ‘Fingerprint retrieval approach based on novel minutiae triplet features’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2012, pp. 170175.
    164. 164)
      • 23. Zezula, P., Amato, G., Dohnal, V., et al: ‘Similarity search: the metric space approach’ (Springer, USA, 2006).
    165. 165)
      • 145. Gentile, J.E., Ratha, N., Connell, J.: ‘SLIC: short-length iris codes’. Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS), Washington D.C., USA, 2009, pp. 15.
    166. 166)
      • 45. Feng, J., Jain, A.K.: ‘Filtering large fingerprint database for latent matching’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 14.
    167. 167)
      • 44. Wang, Y., Hu, J., Phillips, D.: ‘A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing’, Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 573585.
    168. 168)
      • 18. Institute of Electrical and Electronics Engineers: ‘Biometric council newsletter’, IEEE, 2015. Available at: http://ieee-biometrics.org/images/pdf/Newsletter_Nov_2015_corrected.pdf, accessed 11 6 2019.
    169. 169)
      • 26. Rachkovskij, D.A.: ‘Index structures for fast similarity search for binary vectors’, Cybern. Syst. Anal., 2017, 53, (5), pp. 799820.
    170. 170)
      • 58. You, J., Kong, W.K., Zhang, D., et al: ‘On hierarchical palmprint coding with multiple features for personal identification in large databases’, Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 234243.
    171. 171)
      • 46. Cappelli, R.: ‘Fast and accurate fingerprint indexing based on ridge orientation and frequency’, Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (6), pp. 15111521.
    172. 172)
      • 11. Paynter, T.: ‘Northrop Grumman wins $95 million award from department of homeland security to develop next-generation biometric identification services system’, Northrop Grumman, 2018. Available at: https://news.northropgrumman.com/news/releases/northropgrumman-wins-95-million-award-from-departmentof-homeland-security-to-develop-next-generationbiometric-identification-services-system, accessed 11 6 2019.
    173. 173)
      • 155. Rathgeb, C., Hofbauer, H., Uhl, A., et al: ‘TripleA: accelerated accuracy preserving alignment for iris-codes’. Int. Conf. on Biometrics (ICB), Halmstad, Sweden, 2016, pp. 18.
    174. 174)
      • 187. Moses, K.R., Higgins, P., McCabe, M., et al: ‘Automated fingerprint identification system (AFIS)’, in McRoberts, A. (Ed.): ‘Fingerprint sourcebook’ (US Department of Justice, USA, 2010), pp. 133.
    175. 175)
      • 136. Panda, A.K., Mehrotra, H., Majhi, B.: ‘Parallel geometric hashing for robust iris indexing’, J. Real-Time Image Process., 2013, 8, (3), pp. 341349.
    176. 176)
      • 206. Marcel, S.: ‘BEAT – biometrics evaluation and testing’, Biometric Technol. Today, 2013, 2013, (1), pp. 57.
    177. 177)
      • 75. Zheng, R., Zhang, C., He, S., et al: ‘A novel composite framework for large-scale fingerprint database indexing and fast retrieval’. Int. Conf. on Hand-Based Biometrics (ICHB), Hong Kong, 2011, pp. 16.
    178. 178)
      • 202. Gemalto: ‘Automated fingerprint identification system (AFIS) – a short history’, Gemalto Case Studies, 2019. Available at: https://www.gemalto.com/govt/biometrics/afis-history, accessed 11 6 2019.
    179. 179)
      • 194. Drozdowski, P., Garg, S., Rathgeb, C., et al: ‘Privacy-preserving indexing of Iris-codes with cancelable Bloom filter-based search structures’. European Signal Processing Conf. (EUSIPCO), Rome, Italy, 2018, pp. 23602364.
    180. 180)
      • 149. Yang, J.C., Park, D.S.: ‘A fingerprint verification algorithm using tessellated invariant moment features’, Neurocomputing, 2008, 71, (10–12), pp. 19391946.
    181. 181)
      • 37. Liu, L., Chen, J., Fieguth, P., et al: ‘From BoW to CNN: two decades of texture representation for texture classification’, Int. J. Comput. Vis., 2019, 127, (1), pp. 74109.
    182. 182)
      • 173. Koukounis, D., Ttofis, C., Papadopoulos, A., et al: ‘A high performance hardware architecture for portable, low-power retinal vessel segmentation’, Integr. VLSI J., 2014, 47, (3), pp. 377386.
    183. 183)
      • 22. Hjaltason, G.R., Samet, H.: ‘Index-driven similarity search in metric spaces (survey article)’, Trans. Database Syst., 2003, 28, (4), pp. 517580.
    184. 184)
      • 107. Wu, X., Kumar, V., Quinlan, J.R., et al: ‘Top 10 algorithms in data mining’, Knowl. Inf. Syst., 2008, 14, (1), pp. 137.
    185. 185)
      • 42. Li, J., Yau, W.Y., Wang, H.: ‘Fingerprint indexing based on symmetrical measurement’. Int. Conf. on Pattern Recognition (ICPR), Hong Kong, 2006, vol. 1, pp. 10381041.
    186. 186)
      • 17. Daugman, J.: ‘Biometric decision landscapes’. UCAM-CL-TR-482, University of Cambridge - Computer Laboratory, 2000.
    187. 187)
      • 61. Tang, D., Huang, B., Li, R., et al: ‘A person retrieval solution using finger vein patterns’. Int. Conf. on Pattern Recognition (ICPR), Istanbul, Turkey, 2010, pp. 13061309.
    188. 188)
      • 190. European Parliament: ‘Regulation (EU) 2016/679’, Off. J. Eur. Union, 2016, L119, pp. 188.
    189. 189)
      • 146. Rathgeb, C., Uhl, A., Wild, P.: ‘On combining selective best bits of iris-codes’. European Workshop on Biometrics and Identity Management (BioID), Brandenburg, Germany, 2011, pp. 227237.
    190. 190)
      • 69. Hämmerle-Uhl, J., Penn, G., Pötzelsberger, G., et al: ‘Size-reduction strategies for iris codes’, Int. J. Comput. Electr. Autom. Control Inf. Eng., 2015, 9, (1), pp. 290293.
    191. 191)
      • 142. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Minutia cylinder-code: a new representation and matching technique for fingerprint recognition’, Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21282141.
    192. 192)
      • 157. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Turning a vulnerability into an asset: accelerating facial identification with morphing’. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 25822586.
    193. 193)
      • 120. Damer, N., Terhörst, P., Braun, A., et al: ‘General Borda count for multibiometric retrieval’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 420428.
    194. 194)
      • 104. Tapia, J.E., Perez, C.A., Bowyer, K.W.: ‘Gender classification from iris images using fusion of uniform local binary patterns’. European Conf. on Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 751763.
    195. 195)
      • 80. Zhao, Q.: ‘A new approach for noisy iris database indexing based on color information’. Int. Conf. on Computer Science Education (CSE), Qingdao, China, 2011, pp. 2831.
    196. 196)
      • 67. Hao, F., Daugman, J., Zielinski, P.: ‘A fast search algorithm for a large fuzzy database’, Trans. Inf. Forensics Secur., 2008, 3, (2), pp. 203212.
    197. 197)
      • 30. Jain, A.K., Flynn, P., Ross, A.: ‘Handbook of biometrics’ (Springer, USA, 2007).
    198. 198)
      • 89. Perronnin, F., Dugelay, J.L.: ‘Clustering face images with application to image retrieval in large databases’. Biometric Technology for Human Identification II, Orlando, USA, 2005, vol. 5779, pp. 256265.
    199. 199)
      • 97. Pflug, A., Busch, C., Ross, A.: ‘2D ear classification based on unsupervised clustering’. Int. Joint Conf. on Biometrics (IJCB), Clearwater, USA, 2014, pp. 18.
    200. 200)
      • 124. Mhatre, A., Chikkerur, S., Govindaraju, V.: ‘Indexing biometric databases using pyramid technique’. Int. Conf. on Audio-and Video-Based Biometric Person Authentication, New York, USA, 2005, pp. 841849.
    201. 201)
      • 108. Jain, A.K., Murty, M.N., Flynn, P.J.: ‘Data clustering: a review’, Comput. Surv., 1999, 31, (3), pp. 264323.
    202. 202)
      • 153. Kuehlkamp, A., Bowyer, K.: ‘Found a good match: should i keep searching? – accuracy and performance in iris matching using 1-to-first search’, Image Vis. Comput., 2018, 73, pp. 1727.
    203. 203)
      • 101. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part II: experimental analysis and ensemble proposal’, Knowl.-Based Syst., 2015, 81, pp. 98116.
    204. 204)
      • 16. ISO/IEC JTC1 SC37 Biometrics: ‘ISO/IEC 19795-1:2006. Information technology – biometric performance testing and reporting – part 1: principles and framework’ (International Organization for Standardization, 2006).
    205. 205)
      • 88. Iloanusi, O.N.: ‘Fusion of finger types for fingerprint indexing using minutiae quadruplets’, Pattern Recognit. Lett., 2014, 38, pp. 814.
    206. 206)
      • 131. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing scheme with robustness against sample translation and rotation’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2015, pp. 18.
    207. 207)
      • 150. Rathgeb, C., Breitinger, F., Busch, C., et al: ‘On application of bloom filters to iris biometrics’, IET Biometrics, 2014, 3, (4), pp. 207218.
    208. 208)
      • 32. Jain, A.K., Li, S.Z.: ‘Handbook of face recognition’ (Springer, UK, 2011).
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2019.0076
Loading

Related content

content/journals/10.1049/iet-bmt.2019.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address