http://iet.metastore.ingenta.com
1887

access icon openaccess Computational workload in biometric identification systems: an overview

Loading full text...

Full text loading...

/deliver/fulltext/iet-bmt/8/6/IET-BMT.2019.0076.html;jsessionid=34mn27hnkeikb.x-iet-live-01?itemId=%2fcontent%2fjournals%2f10.1049%2fiet-bmt.2019.0076&mimeType=html&fmt=ahah

References

    1. 1)
      • 1. Thakkar, D.: ‘Global biometric market analysis: trends and future prospects’, Bayometric, 2018. Available at: https://www.bayometric.com/global-biometric-market-analysis/, accessed 11 6 2019.
    2. 2)
      • 2. Bhutani, A., Bhardwaj, P.: ‘Biometrics market size by application’. GMI493 Global Market Insights, 2017.
    3. 3)
      • 3. Markets and Markets: ‘Biometric system market by authentication type – global forecast to 2023’. SE 3449, Markets and Markets, 2018.
    4. 4)
      • 4. Unique Identification Authority of India: ‘Role of biometric technology in Aadhaar enrollment’ (UIDAI, India, 2012).
    5. 5)
      • 5. Unique Identification Authority of India: ‘Aadhaar dashboard’, UIDAI, 2018. Available at: https://www.uidai.gov.in/aadhaar_dashboard/, accessed 11 6 2019.
    6. 6)
      • 6. European Union: ‘Regulation (EU) no 603/2013 of the European Parliament and of the Council’, Off. J. Eur. Union, 2013. Available at: https://eur-lex.europa.eu/legalcontent/EN/TXT/?uri=celex:32013R0603, accessed 11 6 2019, 56, pp. 130.
    7. 7)
      • 7. European Union Agency for the Operational Management of Large-Scale IT Systems in the Area of Freedom, Security and Justice: ‘Eurodac storage capacity increased’, eu-LISA, 2016. Available at: https://www.eulisa.europa.eu/Newsroom/News/Pages/Eurodacstorage-capacity-increased.aspx, accessed 11 6 2019.
    8. 8)
      • 8. Gemalto: ‘DHS's automated biometric identification system IDENT – the heart of biometric visitor identification in the USA’, Gemalto Case Studies, 2019. Available at: https://www.gemalto.com/govt/customercases/ident-automated-biometric-identification-system, accessed 11 6 2019.
    9. 9)
      • 9. Federal Bureau of Investigation: ‘CODIS – NDIS statistics’, FBI, 2018. Available at: https://www.fbi.gov/services/laboratory/biometric-analysis/codis/ndis-statistics, accessed 11 6 2019.
    10. 10)
      • 10. Consortium for Elections and Political Process Strengthening: ‘Assessment of electoral preparations in the Democratic Republic of the Congo’, CEPPS, 2018.
    11. 11)
      • 11. Paynter, T.: ‘Northrop Grumman wins $95 million award from department of homeland security to develop next-generation biometric identification services system’, Northrop Grumman, 2018. Available at: https://news.northropgrumman.com/news/releases/northropgrumman-wins-95-million-award-from-departmentof-homeland-security-to-develop-next-generationbiometric-identification-services-system, accessed 11 6 2019.
    12. 12)
      • 12. Department of Homeland Security: ‘DHS/ALL-041 external biometric records (EBR) system of records’, Federal Register, 2018. Available at: https://www.regulations.gov/docket?D=DHS-2017-0039, accessed 11 6 2019.
    13. 13)
      • 13. European Union: ‘Regulation (EU) 2017/2226 of the European Parliament and of the Council’, Official Journal of the European Union, 2017. Available at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32017R2226, accessed 11 6 2019.
    14. 14)
      • 14. European Commission: ‘Smart borders’, EU Migration and Home Affairs, 2018. Available at: https://ec.europa.eu/homeaffairs/what-we-do/policies/borders-and-visas/smartborders_en, accessed 11 6 2019.
    15. 15)
      • 15. ISO/IEC JTC1 SC37 Biometrics: ‘ISO/IEC 2382-37:2017. Information technology – vocabulary – part 37: biometrics’ (International Organization for Standardization, 2017).
    16. 16)
      • 16. ISO/IEC JTC1 SC37 Biometrics: ‘ISO/IEC 19795-1:2006. Information technology – biometric performance testing and reporting – part 1: principles and framework’ (International Organization for Standardization, 2006).
    17. 17)
      • 17. Daugman, J.: ‘Biometric decision landscapes’. UCAM-CL-TR-482, University of Cambridge - Computer Laboratory, 2000.
    18. 18)
      • 18. Institute of Electrical and Electronics Engineers: ‘Biometric council newsletter’, IEEE, 2015. Available at: http://ieee-biometrics.org/images/pdf/Newsletter_Nov_2015_corrected.pdf, accessed 11 6 2019.
    19. 19)
      • 19. Daugman, J.: ‘History of iris recognition’, University of Cambridge – Computer Laboratory, 2019. Available at: https://www.cl.cam.ac.uk/jgd1000/history.html, accessed 11 6 2019.
    20. 20)
      • 20. Gionis, A., Indyk, P., Motwani, R.: ‘Similarity search in high dimensions via hashing’. Int. Conf. on Very Large Data Bases (VLDB), Morgan Kaufmann, 1999, pp. 518529.
    21. 21)
      • 21. Chávez, E., Navarro, G., Baeza-Yates, R., et al: ‘Searching in metric spaces’, Comput. Surv., 2001, 33, (3), pp. 273321.
    22. 22)
      • 22. Hjaltason, G.R., Samet, H.: ‘Index-driven similarity search in metric spaces (survey article)’, Trans. Database Syst., 2003, 28, (4), pp. 517580.
    23. 23)
      • 23. Zezula, P., Amato, G., Dohnal, V., et al: ‘Similarity search: the metric space approach’ (Springer, USA, 2006).
    24. 24)
      • 24. Wang, J., Shen, H.T., Song, J., et al: ‘Hashing for similarity search: a survey’, arXiv preprint arXiv:14082927, 2014, pp. 129.
    25. 25)
      • 25. Abbasifard, M.R., Ghahremani, B., Naderi, H.: ‘A survey on nearest neighbor search methods’, Int. J. Comput. Appl., 2014, 95, (25), pp. 3952.
    26. 26)
      • 26. Rachkovskij, D.A.: ‘Index structures for fast similarity search for binary vectors’, Cybern. Syst. Anal., 2017, 53, (5), pp. 799820.
    27. 27)
      • 27. Rachkovskij, D.A.: ‘Index structures for fast similarity search for real-valued vectors I’, Cybern. Syst. Anal., 2018, 54, (1), pp. 152164.
    28. 28)
      • 28. Rachkovskij, D.A.: ‘Index structures for fast similarity search for real vectors II’, Cybern. Syst. Anal., 2018, 54, (2), pp. 320335.
    29. 29)
      • 29. Li, S.Z., Jain, A.K.: ‘Encyclopedia of biometrics’ (Springer, USA, 2015).
    30. 30)
      • 30. Jain, A.K., Flynn, P., Ross, A.: ‘Handbook of biometrics’ (Springer, USA, 2007).
    31. 31)
      • 31. Maltoni, D., Maio, D., Jain, A.K., et al: ‘Handbook of fingerprint recognition’ (Springer, UK, 2009).
    32. 32)
      • 32. Jain, A.K., Li, S.Z.: ‘Handbook of face recognition’ (Springer, UK, 2011).
    33. 33)
      • 33. Bowyer, K.W., Burge, M.J.: ‘Handbook of iris recognition’ (Springer, UK, 2016).
    34. 34)
      • 34. Uhl, A., Marcel, S., Busch, C., et al: ‘Handbook of vascular biometrics’ (Springer, USA, 2020). forthcoming.
    35. 35)
      • 35. Proença, H., Neves, J.C.: ‘Security’, in Rathgeb, C., Busch, C. (Eds.): ‘Iris and Periocular Recognition’ (Institution of Engineering and Technology, UK, 2017), pp. 101124.
    36. 36)
      • 36. Schuch, P.: ‘Survey on features for fingerprint indexing’, IET Biometrics, 2019, 8, (1), pp. 113.
    37. 37)
      • 37. Liu, L., Chen, J., Fieguth, P., et al: ‘From BoW to CNN: two decades of texture representation for texture classification’, Int. J. Comput. Vis., 2019, 127, (1), pp. 74109.
    38. 38)
      • 38. Ratha, N.K., Karu, K., Chen, S., et al: ‘A real-time matching system for large fingerprint databases’, Trans. Pattern Anal. Mach. Intell., 1996, 18, (8), pp. 799813.
    39. 39)
      • 39. de Boer, J., Bazen, A.M., Gerez, S.H.: ‘Indexing fingerprint databases based on multiple features’. Annual Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, 2001, pp. 300306.
    40. 40)
      • 40. Bhanu, B., Tan, X.: ‘Fingerprint indexing based on novel features of minutiae triplets’, Trans. Pattern Anal. Mach. Intell., 2003, 25, (5), pp. 616622.
    41. 41)
      • 41. Feng, J., Cai, A.: ‘Fingerprint indexing using ridge invariants’. Int. Conf. on Pattern Recognition (ICPR), Hong Kong, 2006, vol. 4, pp. 433436.
    42. 42)
      • 42. Li, J., Yau, W.Y., Wang, H.: ‘Fingerprint indexing based on symmetrical measurement’. Int. Conf. on Pattern Recognition (ICPR), Hong Kong, 2006, vol. 1, pp. 10381041.
    43. 43)
      • 43. Liang, X., Bishnu, A., Asano, T.: ‘A robust fingerprint indexing scheme using minutia neighborhood structure and low-order Delaunay triangles’, Trans. Inf. Forensics Secur., 2007, 2, (4), pp. 721733.
    44. 44)
      • 44. Wang, Y., Hu, J., Phillips, D.: ‘A fingerprint orientation model based on 2D Fourier expansion (FOMFE) and its application to singular-point detection and fingerprint indexing’, Trans. Pattern Anal. Mach. Intell., 2007, 29, (4), pp. 573585.
    45. 45)
      • 45. Feng, J., Jain, A.K.: ‘Filtering large fingerprint database for latent matching’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 14.
    46. 46)
      • 46. Cappelli, R.: ‘Fast and accurate fingerprint indexing based on ridge orientation and frequency’, Trans. Syst. Man Cybern. B, Cybern., 2011, 41, (6), pp. 15111521.
    47. 47)
      • 47. Paulino, A.A., Liu, E., Cao, K., et al: ‘Latent fingerprint indexing: fusion of level 1 and level 2 features’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2013, pp. 18.
    48. 48)
      • 48. Gyaourova, A., Ross, A.: ‘A coding scheme for indexing multimodal biometric databases’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Miami, USA, 2009, pp. 9398.
    49. 49)
      • 49. Gyaourova, A., Ross, A.: ‘Index codes for multibiometric pattern retrieval’, Trans. Inf. Forensics Secur., 2012, 7, (2), pp. 518529.
    50. 50)
      • 50. Mohanty, P., Sarkar, S., Kasturi, R., et al: ‘Subspace approximation of face recognition algorithms: an empirical study’, Trans. Inf. Forensics Secur., 2008, 3, (4), pp. 734748.
    51. 51)
      • 51. Chen, B.C., Chen, Y.Y., Kuo, Y.H., et al: ‘Scalable face image retrieval using attribute-enhanced sparse codewords’, Trans. Multimed., 2013, 15, (5), pp. 11631173.
    52. 52)
      • 52. Wang, D., Jain, A.K.: ‘Face retriever: pre-filtering the gallery via deep neural net’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 473480.
    53. 53)
      • 53. Wang, D., Otto, C., Jain, A.K.: ‘Face search at scale’, Trans. Pattern Anal. Mach. Intell., 2017, 39, (6), pp. 11221136.
    54. 54)
      • 54. Konrad, M., Stögner, H., Uhl, A., et al: ‘Computationally efficient serial combination of rotation-invariant and rotation compensating iris recognition algorithms’. Int. Conf. on Computer Vision Theory and Applications (VISAPP), Angers, France, 2010, vol. 1, pp. 8590.
    55. 55)
      • 55. Gadde, R.B., Adjeroh, D., Ross, A.: ‘Indexing iris images using the burrows-wheeler transform’. Int. Workshop on Information Forensics and Security (WIFS), Seattle, USA, 2010, pp. 16.
    56. 56)
      • 56. Dey, S., Samanta, D.: ‘Iris data indexing method using Gabor energy features’, Trans. Inf. Forensics Secur., 2012, 7, (4), pp. 11921203.
    57. 57)
      • 57. Kavati, I., Prasad, M.V.N.K., Bhagvati, C.: ‘Vein pattern indexing using texture and hierarchical decomposition of Delaunay triangulation’. Int. Symp. on Security in Computing and Communication, Mysore, India, 2013, pp. 213222.
    58. 58)
      • 58. You, J., Kong, W.K., Zhang, D., et al: ‘On hierarchical palmprint coding with multiple features for personal identification in large databases’, Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 234243.
    59. 59)
      • 59. Wu, Z., Ke, Q., Sun, J., et al: ‘Scalable face image retrieval with identity-based quantization and multi-reference re-ranking’. Conf. on. Computer Vision and Pattern Recognition (CVPR), San Francisco, USA, 2010, pp. 34693476.
    60. 60)
      • 60. Gentile, J.E., Ratha, N., Connell, J.: ‘An efficient, two-stage iris recognition system’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2009, pp. 211215.
    61. 61)
      • 61. Tang, D., Huang, B., Li, R., et al: ‘A person retrieval solution using finger vein patterns’. Int. Conf. on Pattern Recognition (ICPR), Istanbul, Turkey, 2010, pp. 13061309.
    62. 62)
      • 62. Billeb, S., Rathgeb, C., Buschbeck, M., et al: ‘Efficient two-stage speaker identification based on universal background models’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2014, pp. 16.
    63. 63)
      • 63. Pflug, A., Rathgeb, C., Scherhag, U., et al: ‘Binarization of spectral histogram models: an application to efficient biometric identification’. Int. Conf. on Cybernetics (CYBCONF), Gdynia, Poland, 2015, pp. 501506.
    64. 64)
      • 64. Iqbal, A., Namboodiri, A.: ‘Cascaded filtering for fingerprint identification using random projections’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Rhode Island, 2012, pp. 7782.
    65. 65)
      • 65. Chen, F., Huang, X., Zhou, J.: ‘Hierarchical minutiae matching for fingerprint and palmprint identification’, Trans. Image Process., 2013, 22, (12), pp. 49644971.
    66. 66)
      • 66. Yi, D., Lei, Z., Hu, Y., et al: ‘Fast matching by 2 lines of code for large scale face recognition systems’, arXiv preprint arXiv:13027180, 2013.
    67. 67)
      • 67. Hao, F., Daugman, J., Zielinski, P.: ‘A fast search algorithm for a large fuzzy database’, Trans. Inf. Forensics Secur., 2008, 3, (2), pp. 203212.
    68. 68)
      • 68. Ross, A., Sunder, M.S.: ‘Block based texture analysis for iris classification and matching’. Conf. on Computer Vision and Pattern Recognition – Workshops (CVPRW), San Francisco, USA, 2010, pp. 3037.
    69. 69)
      • 69. Hämmerle-Uhl, J., Penn, G., Pötzelsberger, G., et al: ‘Size-reduction strategies for iris codes’, Int. J. Comput. Electr. Autom. Control Inf. Eng., 2015, 9, (1), pp. 290293.
    70. 70)
      • 70. Rathgeb, C., Uhl, A., Wild, P.: ‘Incremental iris recognition: a single-algorithm serial fusion strategy to optimize time complexity’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2010.
    71. 71)
      • 71. Surbiryala, J., Raghavendra, R., Busch, C.: ‘Finger vein indexing based on binary features’. Colour and Visual Computing Symp. (CVCS), Gjøvik, Norway, 2015, pp. 16.
    72. 72)
      • 72. Henry, E.R.: ‘Classification and uses of finger prints’ (HM Stationery Office, UK, 1900).
    73. 73)
      • 73. Heindl, R.: ‘Daktyloskopie’ (W. de Gruyter & Company, Germany, 1927).
    74. 74)
      • 74. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: ‘The best bits in an iris code’, Trans. Pattern Anal. Mach. Intell., 2009, 31, (6), pp. 964973.
    75. 75)
      • 75. Zheng, R., Zhang, C., He, S., et al: ‘A novel composite framework for large-scale fingerprint database indexing and fast retrieval’. Int. Conf. on Hand-Based Biometrics (ICHB), Hong Kong, 2011, pp. 16.
    76. 76)
      • 76. Drozdowski, P., Fischer, D., Rathgeb, C., et al: ‘Database binning and retrieval in multi-fingerprint identification systems’. Int. Workshop on Information Forensics and Security (WIFS), Hong Kong, 2018, pp. 17.
    77. 77)
      • 77. Park, U., Liao, S., Klare, B., et al: ‘Face finder: filtering a large face database using scars, marks and tattoos’. MSU-CSE-11-15, Michigan State University, 2011.
    78. 78)
      • 78. Yu, L., Zhang, D., Wang, K., et al: ‘Coarse iris classification using box-counting to estimate fractal dimensions’, Pattern Recognit., 2005, 38, (11), pp. 17911798.
    79. 79)
      • 79. Puhan, N.B., Sudha, N.: ‘A novel iris database indexing method using the iris color’. Conf. on Industrial Electronics and Applications, Singapore, 2008, pp. 18861891.
    80. 80)
      • 80. Zhao, Q.: ‘A new approach for noisy iris database indexing based on color information’. Int. Conf. on Computer Science Education (CSE), Qingdao, China, 2011, pp. 2831.
    81. 81)
      • 81. Palla, S., Chikkerur, S., Govindaraju, V., et al: ‘Classification and indexing in large biometric databases’. Biometrics Consortium Conf., New York, USA, 2004, pp. 13.
    82. 82)
      • 82. Zhou, Y., Liu, Y., Feng, Q., et al: ‘Palm-vein classification based on principal orientation features’, PLOS One, 2014, 9, (11), pp. 112.
    83. 83)
      • 83. Germain, R.S., Califano, A., Colville, S.: ‘Fingerprint matching using transformation parameter clustering’, Comput. Sci. Eng., 1997, 4, (4), pp. 4249.
    84. 84)
      • 84. Ross, A., Mukherjee, R.: ‘Augmenting ridge curves with minutiae triplets for fingerprint indexing’. Biometric Technology for Human Identification IV, Orlando, USA, 2007, vol. 6539, pp. 112.
    85. 85)
      • 85. Liu, M., Jiang, X., Kot, A.C.: ‘Efficient fingerprint search based on database clustering’, Pattern Recognit., 2007, 40, (6), pp. 17931803.
    86. 86)
      • 86. Biswas, S., Ratha, N.K., Aggarwal, G., et al: ‘Exploring ridge curvature for fingerprint indexing’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2008, pp. 16.
    87. 87)
      • 87. Iloanusi, O.N., Gyaourova, A., Ross, A.: ‘Indexing fingerprints using minutiae quadruplets’. Conf. on Computer Vision and Pattern Recognition Workshops (CVPRW), Colorado Springs, USA, 2011, pp. 127133.
    88. 88)
      • 88. Iloanusi, O.N.: ‘Fusion of finger types for fingerprint indexing using minutiae quadruplets’, Pattern Recognit. Lett., 2014, 38, pp. 814.
    89. 89)
      • 89. Perronnin, F., Dugelay, J.L.: ‘Clustering face images with application to image retrieval in large databases’. Biometric Technology for Human Identification II, Orlando, USA, 2005, vol. 5779, pp. 256265.
    90. 90)
      • 90. Chaari, A., Lelandais, S., Ahmed, M.B.: ‘A pruning approach improving face identification systems’. Int. Conf. on Advanced Video and Signal Based Surveillance, Boston, USA, 2009, pp. 8590.
    91. 91)
      • 91. Klare, B.F., Blanton, A., Klein, B.: ‘Efficient face retrieval using synecdoches’. Int. Joint Conf. on Biometrics (IJCB), Clearwater, USA, 2014, pp. 17.
    92. 92)
      • 92. Mukherjee, R., Ross, A.: ‘Indexing iris images’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 13.
    93. 93)
      • 93. Sun, Z., Zhang, H., Tan, T., et al: ‘Iris image classification based on hierarchical visual codebook’, Trans. Pattern Anal. Mach. Intell., 2014, 36, (6), pp. 11201133.
    94. 94)
      • 94. Nalla, P.R., Chalavadi, K.M.: ‘Iris classification based on sparse representations using on-line dictionary learning for large-scale de-duplication applications’, SpringerPlus, 2015, 4, (1), pp. 238248.
    95. 95)
      • 95. Raghavendra, R., Surbiryala, J., Busch, C.: ‘An efficient finger vein indexing scheme based on unsupervised clustering’. Int. Conf. on Identity, Security and Behavior Analysis (ISBA), Hong Kong, 2015, pp. 18.
    96. 96)
      • 96. Mhatre, A.J., Palla, S., Chikkerur, S., et al: ‘Efficient search and retrieval in biometric databases’. Biometric Technology for Human Identification II, Orlando, USA, 2005, vol. 5779, pp. 265274.
    97. 97)
      • 97. Pflug, A., Busch, C., Ross, A.: ‘2D ear classification based on unsupervised clustering’. Int. Joint Conf. on Biometrics (IJCB), Clearwater, USA, 2014, pp. 18.
    98. 98)
      • 98. Dantcheva, A., Elia, P., Ross, A.: ‘What else does your biometric data reveal? A survey on soft biometrics’, Trans. Inf. Forensics Secur., 2016, 11, (3), pp. 441467.
    99. 99)
      • 99. Galton, F.: ‘Fingerprint directories’ (Macmillan and Company, UK, 1895).
    100. 100)
      • 100. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part I: taxonomies on feature extraction methods and learning models’, Knowl.-Based Syst., 2015, 81, pp. 7697.
    101. 101)
      • 101. Galar, M., Derrac, J., Peralta, D., et al: ‘A survey of fingerprint classification part II: experimental analysis and ensemble proposal’, Knowl.-Based Syst., 2015, 81, pp. 98116.
    102. 102)
      • 102. Wayman, J.L.: ‘Multifinger penetration rate and ROC variability for automatic fingerprint identification systems’, in Ratha, N., Bolle, R. (Eds.): ‘Automatic fingerprint recognition systems’ (Springer, USA, 2004), pp. 305316.
    103. 103)
      • 103. Qiu, X., Sun, Z., Tan, T.: ‘Global texture analysis of iris images for ethnic classification’, Adv. Biometrics, 2005, 3832, pp. 411418.
    104. 104)
      • 104. Tapia, J.E., Perez, C.A., Bowyer, K.W.: ‘Gender classification from iris images using fusion of uniform local binary patterns’. European Conf. on Computer Vision (ECCV), Zurich, Switzerland, 2014, pp. 751763.
    105. 105)
      • 105. Singh, M., Nagpal, S., Vatsa, M., et al: ‘Gender and ethnicity classification of iris images using deep class-encoder’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 666673.
    106. 106)
      • 106. Dantcheva, A., Erdogmus, N., Dugelay, J.L.: ‘On the reliability of eye color as a soft biometric trait’. Workshop on Applications of Computer Vision (WACV), Hawaii, USA, 2011, pp. 227231.
    107. 107)
      • 107. Wu, X., Kumar, V., Quinlan, J.R., et al: ‘Top 10 algorithms in data mining’, Knowl. Inf. Syst., 2008, 14, (1), pp. 137.
    108. 108)
      • 108. Jain, A.K., Murty, M.N., Flynn, P.J.: ‘Data clustering: a review’, Comput. Surv., 1999, 31, (3), pp. 264323.
    109. 109)
      • 109. Aggarwal, C.C., Reddy, C.K.: ‘Data clustering: algorithms and applications’ (Chapman & Hall/CRC, USA, 2013).
    110. 110)
      • 110. Mansukhani, P., Tulyakov, S., Govindaraju, V.: ‘A framework for efficient fingerprint identification using a minutiae tree’, Syst. J., 2010, 4, (2), pp. 126137.
    111. 111)
      • 111. Dewangan, J., Dey, S., Samanta, D.: ‘Face images database indexing for person identification problem’, Int. J. Biometrics Bioinf., 2013, 7, (2), pp. 93122.
    112. 112)
      • 112. Mehrotra, H., Srinivas, B.G., Majhi, B.: ‘Indexing iris biometric database using energy histogram of DCT subbands’, J. Commun. Comput. Inf. Sci., 2009, 40, pp. 194204.
    113. 113)
      • 113. Khalaf, E.T., Mohammed, M., Moorthy, K.: ‘Robust partitioning and indexing for iris biometric database based on local features’, IET Biometrics, 2018, 7, (6), pp. 589597.
    114. 114)
      • 114. Jayaraman, U., Prakash, S., Gupta, P.: ‘An efficient color and texture based iris image retrieval technique’, Expert Syst. Appl., 2012, 39, (5), pp. 49154926.
    115. 115)
      • 115. Barbu, T., Luca, M.: ‘Content-based iris indexing and retrieval model using spatial acces methods’. Int. Symp. on Signals, Circuits and Systems (ISSCS), Iasi, Romania, 2015, pp. 14.
    116. 116)
      • 116. Rathgeb, C., Breitinger, F., Baier, H., et al: ‘Towards bloom filter-based indexing of iris biometric data’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 422429.
    117. 117)
      • 117. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Multi-iris indexing and retrieval: fusion strategies for Bloom filter-based search structures’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 4653.
    118. 118)
      • 118. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Bloom filter-based search structures for indexing and retrieving iris-codes’, IET Biometrics, 2018, 7, pp. 260268.
    119. 119)
      • 119. Damer, N., Terhörst, P., Braun, A., et al: ‘Indexing of single and multiinstance iris data based on LSH-forest and rotation invariant representation’. Int. Conf. on Computer Analysis of Images and Patterns (CAIP), Ystad, Sweden, 2017, pp. 190201.
    120. 120)
      • 120. Damer, N., Terhörst, P., Braun, A., et al: ‘General Borda count for multibiometric retrieval’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 420428.
    121. 121)
      • 121. Proença, H.: ‘Iris biometrics: indexing and retrieving heavily degraded data’, Trans. Inf. Forensics Secur., 2013, 8, (12), pp. 19751985.
    122. 122)
      • 122. Jayaraman, U., Prakash, S., Gupta, P.: ‘Indexing multimodal biometric databases using kd-tree with feature level fusion’. Int. Conf. on Information Systems Security, Ystad, Sweden, 2008, pp. 221234.
    123. 123)
      • 123. Wang, K., Yang, L., Su, K., et al: ‘Binary search path of vocabulary tree based finger vein image retrieval’. Int. Conf. on Biometrics (ICB), Halmstad, Sweden, 2016, pp. 18.
    124. 124)
      • 124. Mhatre, A., Chikkerur, S., Govindaraju, V.: ‘Indexing biometric databases using pyramid technique’. Int. Conf. on Audio-and Video-Based Biometric Person Authentication, New York, USA, 2005, pp. 841849.
    125. 125)
      • 125. Gupta, P., Sana, A., Mehrotra, H., et al: ‘An efficient indexing scheme for binary feature based biometric database’. Biometric Technology for Human Identification IV, Orlando, USA, 2007, vol. 6539, pp. 110.
    126. 126)
      • 126. Shuai, X., Zhang, C., Hao, P.: ‘Fingerprint indexing based on composite set of reduced SIFT features’. Int. Conf. on Pattern Recognition (ICPR), Tampa, USA, 2008, pp. 14.
    127. 127)
      • 127. He, S., Zhang, C., Hao, P.: ‘Comparative study of features for fingerprint indexing’. Int. Conf. on Image Processing (ICIP), Cairo, Egypt, 2009, pp. 27492752.
    128. 128)
      • 128. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Fingerprint indexing based on minutia cylinder-code’, Trans. Pattern Anal. Mach. Intell., 2011, 33, (5), pp. 10511057.
    129. 129)
      • 129. Yuan, B., Su, F., Cai, A.: ‘Fingerprint retrieval approach based on novel minutiae triplet features’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2012, pp. 170175.
    130. 130)
      • 130. Wang, Y., Wang, L., Cheung, Y.M., et al: ‘Learning compact binary codes for hash-based fingerprint indexing’, Trans. Inf. Forensics Secur., 2015, 10, (8), pp. 16031616.
    131. 131)
      • 131. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing scheme with robustness against sample translation and rotation’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2015, pp. 18.
    132. 132)
      • 132. Kaushik, V.D., Umarani, J., Gupta, A.K., et al: ‘An efficient indexing scheme for face database using modified geometric hashing’, Neurocomputing, 2013, 116, pp. 208221.
    133. 133)
      • 133. Mehrotra, H., Majhi, B., Gupta, P.: ‘Robust iris indexing scheme using geometric hashing of sift keypoints’, J. Netw. Comput. Appl., 2010, 33, (3), pp. 300313.
    134. 134)
      • 134. Rathgeb, C., Uhl, A.: ‘Iris-biometric hash generation for biometric database indexing’. Int. Conf. on Pattern Recognition (ICPR), Istanbul, Turkey, 2010, pp. 28482851.
    135. 135)
      • 135. Jayaraman, U., Gupta, P.: ‘Iris code hashing’. Int. Conf. on Communications (ICC), Budapest, Hungary, 2013, pp. 21232127.
    136. 136)
      • 136. Panda, A.K., Mehrotra, H., Majhi, B.: ‘Parallel geometric hashing for robust iris indexing’, J. Real-Time Image Process., 2013, 8, (3), pp. 341349.
    137. 137)
      • 137. Badrinath, G.S., Gupta, P., Mehrotra, H.: ‘Score level fusion of voting strategy of geometric hashing and SURF for an efficient palmprint-based identification’, J. Real-Time Image Process., 2013, 8, (3), pp. 265284.
    138. 138)
      • 138. Knuth, D.: ‘Sorting and searching’, Art Comput. Program., (Addison-Wesley, USA, 1998), 3.
    139. 139)
      • 139. Cormen, T.H., Leiserson, C.E., Rivest, R.L., et al: ‘Introduction to algorithms’ (MIT press, USA, 2009).
    140. 140)
      • 140. Lamdan, Y., Wolfson, H.J.: ‘Geometric hashing: a general and efficient model-based recognition scheme’. Int. Conf. on Computer Vision (ICCV), Tampa, USA, 1988, pp. 238249.
    141. 141)
      • 141. Wolfson, H.J., Rigoutsos, I.: ‘Geometric hashing: an overview’, Comput. Sci. Eng., 1997, 4, (4), pp. 1021.
    142. 142)
      • 142. Cappelli, R., Ferrara, M., Maltoni, D.: ‘Minutia cylinder-code: a new representation and matching technique for fingerprint recognition’, Trans. Pattern Anal. Mach. Intell., 2010, 32, (12), pp. 21282141.
    143. 143)
      • 143. Schlett, T., Rathgeb, C., Busch, C.: ‘A binarization scheme for face recognition based on multi-scale block local binary patterns’. Int. Conf. of the Biometrics Special Interest Group (BIOSIG), Darmstadt, Germany, 2016, pp. 14.
    144. 144)
      • 144. Drozdowski, P., Struck, F., Rathgeb, C., et al: ‘Benchmarking binarisation schemes for deep face templates’. Int. Conf. on Image Processing (ICIP), Athens, Greece, 2018, pp. 191195.
    145. 145)
      • 145. Gentile, J.E., Ratha, N., Connell, J.: ‘SLIC: short-length iris codes’. Int. Conf. on Biometrics: Theory, Applications, and Systems (BTAS), Washington D.C., USA, 2009, pp. 15.
    146. 146)
      • 146. Rathgeb, C., Uhl, A., Wild, P.: ‘On combining selective best bits of iris-codes’. European Workshop on Biometrics and Identity Management (BioID), Brandenburg, Germany, 2011, pp. 227237.
    147. 147)
      • 147. Jain, A.K., Prabhakar, S., Hong, L., et al: ‘Filterbank-based fingerprint matching’, Trans. Image Process., 2000, 9, (5), pp. 846859.
    148. 148)
      • 148. Xu, H., Veldhuis, R.N.J., Kevenaar, T.A.M., et al: ‘Spectral minutiae: a fixed-length representation of a minutiae set’. Conf. on Computer Vision and Pattern RecognitionWorkshops (CVPRW), Alaska, USA, 2008, pp. 16.
    149. 149)
      • 149. Yang, J.C., Park, D.S.: ‘A fingerprint verification algorithm using tessellated invariant moment features’, Neurocomputing, 2008, 71, (10–12), pp. 19391946.
    150. 150)
      • 150. Rathgeb, C., Breitinger, F., Busch, C., et al: ‘On application of bloom filters to iris biometrics’, IET Biometrics, 2014, 3, (4), pp. 207218.
    151. 151)
      • 151. Damer, N., Terhörst, P., Braun, A., et al: ‘Efficient, accurate, and rotation-invariant iris code’, Signal Process. Lett., 2017, 24, (8), pp. 12331237.
    152. 152)
      • 152. Lim, M.H., Teoh, A.B.J., Kim, J.: ‘Biometric feature-type transformation: making templates compatible for secret protection’, IEEE Signal Process. Mag., 2015, 32, (5), pp. 7787.
    153. 153)
      • 153. Kuehlkamp, A., Bowyer, K.: ‘Found a good match: should i keep searching? – accuracy and performance in iris matching using 1-to-first search’, Image Vis. Comput., 2018, 73, pp. 1727.
    154. 154)
      • 154. Cappelli, R., Ferrara, M., Maio, D.: ‘Candidate list reduction based on the analysis of fingerprint indexing scores’, Trans. Inf. Forensics Secur., 2011, 6, (3), pp. 11601164.
    155. 155)
      • 155. Rathgeb, C., Hofbauer, H., Uhl, A., et al: ‘TripleA: accelerated accuracy preserving alignment for iris-codes’. Int. Conf. on Biometrics (ICB), Halmstad, Sweden, 2016, pp. 18.
    156. 156)
      • 156. Drozdowski, P., Rathgeb, C., Hofbauer, H., et al: ‘Towards pre-alignment of near-infrared iris images’. Int. Joint Conf. on Biometrics (IJCB), Denver, USA, 2017, pp. 359366.
    157. 157)
      • 157. Drozdowski, P., Rathgeb, C., Busch, C.: ‘Turning a vulnerability into an asset: accelerating facial identification with morphing’. Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 25822586.
    158. 158)
      • 158. Singh, M., Singh, R., Ross, A.: ‘A comprehensive overview of biometric fusion’, Inf. Fusion, 2019, 52, pp. 187205.
    159. 159)
      • 159. Berten Digital Signal Processing: ‘GPU vs FPGA performance comparison’. BWP001 v1.0, Berten DSP, 2016.
    160. 160)
      • 160. Singh, D., Reddy, C.K.: ‘A survey on platforms for big data analytics’, J. Big. Data., 2015, 2, (1), pp. 120.
    161. 161)
      • 161. Rathgeb, C., Buchmann, N., Hofbauer, H., et al: ‘Methods for accuracy-preserving acceleration of large-scale comparisons in CPU-based iris ecognition systems’, IET Biometrics, 2018, 7, (4), pp. 356364.
    162. 162)
      • 162. López, M., Daugman, J., Cantó, E.: ‘Hardware–software co-design of an iris recognition algorithm’, IET Inf. Sec., 2011, 5, (1), pp. 6068.
    163. 163)
      • 163. Saegusa, T., Maruyama, T., Yamaguchi, Y.: ‘How fast is an FPGA in image processing?’. Int. Conf. on Field Programmable Logic and Applications, Heidelberg, Germany, 2008, pp. 7782.
    164. 164)
      • 164. Sirowy, S., Forin, A.: ‘Where's the beef? why FPGAs are so fast’. MSR-TR-2008-130, Microsoft Research, 2008.
    165. 165)
      • 165. Andina, J.J.R., De la Torre Arnanz, E., Valdes, M.D.: ‘FPGAs: fundamentals, advanced features, and applications in industrial electronics’ (CRC Press, USA, 2017).
    166. 166)
      • 166. Tessier, R., Pocek, K., DeHon, A.: ‘Reconfigurable computing architectures’, Proc. IEEE, 2015, 103, (3), pp. 332354.
    167. 167)
      • 167. García, G.J., Jara, C.A., Pomares, J., et al: ‘A survey on FPGA-based sensor systems: towards intelligent and reconfigurable low-power sensors for computer vision, control and signal processing’, Sensors, 2014, 14, (4), pp. 62476278.
    168. 168)
      • 168. Chen, A.T.J., Biglari-Abhari, M., Wang, K.I.K., et al: ‘Convolutional neural network acceleration with hardware/software codesign’, Appl. Intell., 2018, 48, (5), pp. 12881301.
    169. 169)
      • 169. Rakvic, R.N., Ulis, B.J., Broussard, R.P., et al: ‘Parallelizing iris recognition’, Trans. Inf. Forensics Secur., 2009, 4, (4), pp. 812823.
    170. 170)
      • 170. Fons, M., Fons, F., Cantó, E.: ‘Fingerprint image processing acceleration through run-time reconfigurable hardware’, Trans. Circuits Syst. II, Express Briefs, 2010, 57, (12), pp. 991995.
    171. 171)
      • 171. Stekas, N., van den Heuvel, D.: ‘Face recognition using local binary patterns histograms (LBPH) on an FPGA-based system on chip (SoC)’. Int. Parallel and Distributed Processing Symp. Workshops (IPDPSW), Chicago, USA, 2016, pp. 300304.
    172. 172)
      • 172. Jadhav, M., Nerkar, P.M.: ‘Implementation of an embedded hardware of FVRS on FPGA’. Int. Conf. on Information Processing (ICIP), Québec City, Canada, 2015, pp. 4853.
    173. 173)
      • 173. Koukounis, D., Ttofis, C., Papadopoulos, A., et al: ‘A high performance hardware architecture for portable, low-power retinal vessel segmentation’, Integr. VLSI J., 2014, 47, (3), pp. 377386.
    174. 174)
      • 174. Bouraoui, H., Jerad, C., Chattopadhyay, A., et al: ‘Hardware architectures for embedded speaker recognition applications: a survey’, Trans. Embedded Comput. Syst., 2017, 16, (3), p. 78.
    175. 175)
      • 175. Nickolls, J., Buck, I., Garland, M., et al: ‘Scalable parallel programming with CUDA’. SIGGRAPH Classes, Los Angeles, USA, 2008, pp. 4253.
    176. 176)
      • 176. Stone, J.E., Gohara, D., Shi, G.: ‘OpenCL: a parallel programming standard for heterogeneous computing systems’, Comput. Sci. Eng., 2010, 12, (3), pp. 6673.
    177. 177)
      • 177. Mittal, S., Vetter, J.S.: ‘A survey of CPU-GPU heterogeneous computing techniques’, Comput. Surv., 2015, 47, (4), pp. 135.
    178. 178)
      • 178. Lastra, M., Gutiérrez, P.D., Benítez, J.M., et al: ‘GPU processing for biometric big data based identification. Why and what for?’, Biostat Biometrics Open Access J., 2017, 2, pp. 14.
    179. 179)
      • 179. Barrus, J.: ‘Cloud TPU machine learning accelerators now available in beta’, Google, 2018. Available at: https://cloud.google.com/blog/products/gcp/cloud-tpu-machine-learningaccelerators-now-available-in-beta, accessed 11 6 2019.
    180. 180)
      • 180. Li, X., Zhang, G., Huang, H.H., et al: ‘Performance analysis of GPU-based convolutional neural networks’. Int. Conf. on Parallel Processing (ICPP), Philadelphia, USA, 2016, pp. 6776.
    181. 181)
      • 181. Schroff, F., Kalenichenko, D., Philbin, J.: ‘Facenet: a unified embedding for face recognition and clustering’. Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015, pp. 815823.
    182. 182)
      • 182. Vandal, N.A., Savvides, M.: ‘CUDA accelerated iris template matching on graphics processing units (GPUs)’. Int. Conf. on Biometrics: Theory, Applications and Systems (BTAS), Washington D.C., USA, 2010, pp. 17.
    183. 183)
      • 183. Ghafoor, M., Iqbal, S., Tariq, S.A., et al: ‘Efficient fingerprint matching using GPU’, IET Image Process., 2018, 12, (2), pp. 274284.
    184. 184)
      • 184. Yi, S., Yoon, I., Oh, C., et al: ‘Real-time integrated face detection and recognition on embedded GPGPUs’. Symp. on Embedded Systems for Real-time Multimedia (ESTIMedia), Montreal, Canada, 2014, pp. 98107.
    185. 185)
      • 185. Lin, Y., Du, E.Y., Zhou, Z., et al: ‘An efficient parallel approach for sclera vein recognition’, Trans. Inf. Forensics Secur., 2014, 9, (2), pp. 147157.
    186. 186)
      • 186. Rife, D.C.: ‘Finger prints as criteria of ethnic relationship’, Am. J. Hum. Genet., 1953, 5, (4), p. 389.
    187. 187)
      • 187. Moses, K.R., Higgins, P., McCabe, M., et al: ‘Automated fingerprint identification system (AFIS)’, in McRoberts, A. (Ed.): ‘Fingerprint sourcebook’ (US Department of Justice, USA, 2010), pp. 133.
    188. 188)
      • 188. Federal Bureau of Investigation: ‘The science of fingerprints: classification and uses’ (General Press, USA, 2013).
    189. 189)
      • 189. Nandakumar, K., Jain, A.K.: ‘Biometric template protection: bridging the performance gap between theory and practice’, Signal Process. Mag., 2015, 32, (5), pp. 88100.
    190. 190)
      • 190. European Parliament: ‘Regulation (EU) 2016/679’, Off. J. Eur. Union, 2016, L119, pp. 188.
    191. 191)
      • 191. ISO/IEC JTC1 SC27 IT Security techniques: ‘ISO/IEC 24745:2011. Information technology – security techniques – biometric information protection’ (International Organization for Standardization, 2011).
    192. 192)
      • 192. Rathgeb, C., Uhl, A.: ‘A survey on biometric cryptosystems and cancelable biometrics’, EURASIP J. Inf. Secur., 2011, 2011, pp. 328.
    193. 193)
      • 193. Li, G., Yang, B., Busch, C.: ‘A fingerprint indexing algorithm on encrypted domain’. Trustcom/BigDataSE/ISPA, Tianjin, China, 2016, pp. 10301037.
    194. 194)
      • 194. Drozdowski, P., Garg, S., Rathgeb, C., et al: ‘Privacy-preserving indexing of Iris-codes with cancelable Bloom filter-based search structures’. European Signal Processing Conf. (EUSIPCO), Rome, Italy, 2018, pp. 23602364.
    195. 195)
      • 195. Wang, Y., Wan, J., Guo, J., et al: ‘Inference-based similarity search in randomized Montgomery domains for privacy-preserving biometric identification’, Trans. Pattern Anal. Mach. Intell., 2018, 40, (7), pp. 16111624.
    196. 196)
      • 196. Simmhan, Y., Shukla, A., Verma, A.: ‘Benchmarking fast-data platforms for the Aadhaar biometric database’. Big Data Benchmarking, Potsdam, Germany, 2015, pp. 2139.
    197. 197)
      • 197. Al-Raisi, A.N., Al-Khouri, A.M.: ‘Iris recognition and the challenge of homeland and border control security in UAE’, Telemat. Inform., 2008, 25, (2), pp. 117132.
    198. 198)
      • 198. Daugman, J., Malhas, I.: ‘Iris recognition border-crossing system in the UAE’, Int. Airpt. Rev., 2004, 8, (2), pp. 15.
    199. 199)
      • 199. Daugman, J.: ‘How iris recognition works’, Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 2130.
    200. 200)
      • 200. Gorodnichy, D.O., Chumakov, M.P.: ‘Analysis of the effect of ageing, age, and other factors on iris recognition performance using NEXUS scores dataset’, IET Biometrics, 2019, 8, (1), pp. 2939.
    201. 201)
      • 201. Komarinski, P.: ‘Automated fingerprint identification systems (AFIS)’ (Elsevier, USA, 2005).
    202. 202)
      • 202. Gemalto: ‘Automated fingerprint identification system (AFIS) – a short history’, Gemalto Case Studies, 2019. Available at: https://www.gemalto.com/govt/biometrics/afis-history, accessed 11 6 2019.
    203. 203)
      • 203. Grother, P., Ngan, M., Hanaoka, K.: ‘Ongoing face recognition vendor test (FRVT) part 2: identification’. NISTIR 8238, National Institute of Standards and Technology, 2018.
    204. 204)
      • 204. Jain, A., Klare, B., Ross, A.: ‘Guidelines for best practices in biometrics research’. Int. Conf. on Biometrics (ICB), Phuket, Thailand, 2015, pp. 541545.
    205. 205)
      • 205. Murphy, T.M., Broussard, R., Rakvic, R., et al: ‘Use of synthetic data to test biometric algorithms’, J. Electron. Imaging, 2016, 25, (4), p. 043023.
    206. 206)
      • 206. Marcel, S.: ‘BEAT – biometrics evaluation and testing’, Biometric Technol. Today, 2013, 2013, (1), pp. 57.
    207. 207)
      • 207. Cappelli, R., Ferrara, M., Maltoni, D.: ‘FIDXICB-2013’, University of Bologna Biometric System Laboratory, 2013. Available at: https://biolab.csr.unibo.it/fvcongoing/UI/Form/ICB2013FIDX.aspx, accessed 11 6 2019.
    208. 208)
      • 208. National Institute of Standards and Technology: ‘Face recognition vendor test (FRVT) 1:N evaluation’, NIST, 2017. Available at: https://www.nist.gov/programs-projects/facerecognition-vendor-test-frvt-1n-2018-evaluation, accessed 11 6 2019.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2019.0076
Loading

Related content

content/journals/10.1049/iet-bmt.2019.0076
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address