Face template protection using deep LDPC codes learning

Face template protection using deep LDPC codes learning

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

There is a noticeable tendency to apply deep convolutional neural network (CNN) in facial identification, since it is able to boost performance in face recognition and verification. However, due to the users have unique facial, exposure of face template to adversaries can severely compromise system security and users’ privacy. Here, the authors propose a face template protection technique by using multi-label learning, which maps the facials into low-density parity-check (LDPC) codes. Firstly, a random binary sequence is generated to represent a user and further hashed to produce the protected template. During the training, the random binary sequences are encoded by an LDPC encoder to produce diverse binary codes. Based on carefully designed deep multi-label learning, the facial features of each user are mapped to a diverse binary code. In the process of recognition and verification, the deep CNN mapping architecture is modelled as a Gaussian channel, while the noise brought by intra-variations in the outputs of CNN can be removed by the LDPC decoder. Thus, a robust face template protection scheme is achieved. The simulation results on PIE and extended Yale B indicate that the proposed scheme achieves high genuine accept rate at 1% false accept rate.

Related content

This is a required field
Please enter a valid email address