http://iet.metastore.ingenta.com
1887

Finger vein recognition using mutual sparse representation classification

Finger vein recognition using mutual sparse representation classification

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Sparse representation classification (SRC) is one of the popular methods of classification in biometrics, in which the decision of class for the test sample was based on the class with minimum reconstruction error. As SRC is based on the sparsity of the images, a decision based on reconstruction error is not ideal. In this study, an efficient classification methodology for finger vein recognition called mutual SRC (MSRC) is proposed. MSRC classifies the test sample by a new decision rule which significantly improves the recognition rate of the conventional SRC. By this new decision rule, the classification of the test sample is not only based on the nearest sparse neighbour but also on determining the training sample which considers the test sample as its nearest neighbour (NN). In this method, the training set is selected based on reconstruction error for the test sample, then which training sample considers the test sample as its NN is identified by sparse representation. Increases of 4.67, 10.59, 26.82, and 3.44% in the recognition rates are observed for the proposed MSRC method when compared with conventional SRC using the four public finger vein database.

References

    1. 1)
      • 1. Jain, A.K., Ross, A., Prabhakar, S.: ‘An introduction to biometric recognition’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (1), pp. 420.
    2. 2)
      • 2. Xue, M., Sun, Q.: ‘Vasculature development in embryos and its regulatory mechanisms’, Chin. J. Compar. Med., 2002, 13, (1), pp. 4549.
    3. 3)
      • 3. Yang, J., Shi, Y., Jia, G.: ‘Finger-vein image matching based on adaptive curve transformation’, Pattern Recognit., 2017, 66, pp. 3443.
    4. 4)
      • 4. Xi, X., Yang, L., Yin, Y.: ‘Learning discriminative binary codes for finger vein recognition’, Pattern Recognit., 2017, 66, pp. 2633.
    5. 5)
      • 5. Matsuda, Y., Miura, N., Nagasaka, A., et al: ‘Finger-vein authentication based on deformation-tolerant feature-point matching’, Mach. Vis. Appl., 2016, 27, (2), pp. 237250.
    6. 6)
      • 6. Qiu, S., Liu, Y., Zhou, Y., et al: ‘Finger-vein recognition based on dual-sliding window localization and pseudo-elliptical transformer’, Expert Syst. Appl., 2016, 64, pp. 618632.
    7. 7)
      • 7. Liu, T., Xie, J., Yan, W., et al: ‘Finger-vein pattern restoration with direction-variance-boundary constraint search’, Eng. Appl. Artif. Intell., 2015, 46, pp. 131139.
    8. 8)
      • 8. Gupta, P., Gupta, P.: ‘An accurate finger vein based verification system’, Digit. Signal Process., 2015, 38, pp. 4352.
    9. 9)
      • 9. Liu, B.C., Xie, S.J., Park, D.S.: ‘Finger vein recognition using optimal partitioning uniform rotation invariant LBP descriptor’, J. Electr. Comput. Eng., 2016, pp. 110.
    10. 10)
      • 10. Qin, H., El-Yacoubi, M.A.: ‘Deep representation-based feature extraction and recovering for finger-vein verification’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (8), pp. 18161829.
    11. 11)
      • 11. Yang, L., Yang, G., Yin, Y., et al: ‘Finger vein recognition with anatomy structure analysis’, IEEE Trans. Circuits Syst. Video Technol., 2017, 28, pp. 120.
    12. 12)
      • 12. Veluchamy, S., Karlmarx, L.R.: ‘System for multimodal biometric recognition based on finger knuckle and finger vein using feature-level fusion and k-support vector machine classifier’, ET Biometrics, 2016, 6, (3), pp. 232242.
    13. 13)
      • 13. Wu, J., Liu, C.: ‘Finger-vein pattern identification using principal component analysis and the neural network technique’, Expert Syst. Appl., 2011, 38, (5), pp. 54235427.
    14. 14)
      • 14. Sun, A., Lim, E., Liu, Y.: ‘On strategies for imbalanced text classification using SVM: a comparative study’, Decis. Support Syst., 2009, 48, (1), pp. 191201.
    15. 15)
      • 15. Mobarakeh, A.K., Rizi, S.M., Nazari, S., et al: ‘Finger vein recognition using local mean based K-nearest centroid neighbor classifier’, Adv. Mater. Res. Trans. Tech. Publ., 2012, 628, pp. 427432.
    16. 16)
      • 16. Xin, Y., Liu, Z., Zhang, H., et al: ‘Finger vein verification system based on sparse representation’, Appl. Opt., 2012, 51, (25), pp. 62526258.
    17. 17)
      • 17. Wright, J., Yang, A.Y., Ganesh, A., et al: ‘Robust face recognition via sparse representation’, IEEE Trans. Pattern Anal. Mach. Intell., 2009, 31, (2), pp. 210227.
    18. 18)
      • 18. Liu, T., Mi, J., Liu, Y., et al: ‘Robust face recognition via sparse boosting representation’, Neurocomputing, 2016, 214, pp. 944957.
    19. 19)
      • 19. Bian, W., Ding, S., Xue, Y.: ‘Fingerprint image super resolution using sparse representation with ridge pattern prior by classification coupled dictionaries’, IET Biometrics, 2016, 6, (5), pp. 342350.
    20. 20)
      • 20. Pillai, J.K., Patel, V.M., Chellappa, R., et al: ‘Secure and robust iris recognition using random projections and sparse representations’, IEEE Trans. Pattern Anal. Mach. Intell., 2011, 33, (9), pp. 18771893.
    21. 21)
      • 21. Zhai, L., Fu, S., Zhang, C., et al: ‘An efficient classification method based on principal component and sparse representation’, SpringerPlus, 2016, 5, (1), pp. 111.
    22. 22)
      • 22. Kumar, A., Chan, T.T.: ‘Robust ear identification using sparse representation of local texture descriptors’, Pattern Recognit., 2013, 46, (1), pp. 7385.
    23. 23)
      • 23. Yang, Q., Xue, D.: ‘Gait recognition based on sparse representation and segmented frame difference energy image’, Inf. Control, 2013, 42, (1), pp. 2732.
    24. 24)
      • 24. Chen, S.S., Donoho, D.L., Saunders, M.A.: ‘Atomic decomposition by basis pursuit’, SIAM Rev., 2001, 43, (1), pp. 129159.
    25. 25)
      • 25. Yang, J., Peng, Y., Xu, W., et al: ‘Ways to sparse representation: an overview’, Sci. China F, Inf. Sci., 2009, 52, (4), pp. 695703.
    26. 26)
      • 26. Xu, Y., Zhu, Q., Fan, Z., et al: ‘Using the idea of the sparse representation to perform coarse-to-fine face recognition’, Inf. Sci., 2013, 238, pp. 138148.
    27. 27)
      • 27. Xu, Y., Zhang, D., Yang, J., et al: ‘A two-phase test sample sparse representation method for use with face recognition’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (9), pp. 12551262.
    28. 28)
      • 28. Shazeeda, S., Rosdi, B.A.: ‘Finger vein identification based on the fusion of nearest neighbor and sparse representation based classifiers’, Indian J. Sci. Technol., 2016, 9, (48), pp. 17.
    29. 29)
      • 29. Li, J., Lu, C.: ‘A new decision rule for sparse representation based classification for face recognition’, Neurocomputing, 2013, 116, pp. 265271.
    30. 30)
      • 30. Damavandinejadmonfared, S., Mobarakeh, A.K., Suandi, S.A., et al: ‘Evaluate and determine the most appropriate method to identify finger vein’, Procedia Eng., 2012, 41, pp. 516521.
    31. 31)
      • 31. Tang, B., He, H.: ‘ENN: extended nearest neighbor method for pattern recognition [research frontier]’, IEEE Comput. Intell. Mag., 2015, 10, (3), pp. 5260.
    32. 32)
      • 32. Hu, Z., Peng, Y., Zhao, S.: ‘A new sparse representation algorithm based on kernel spatial non-minimum residual error for classification’, Opt. Int. J. Light Electron Opt., 2015, 126, (23), pp. 46654670.
    33. 33)
      • 33. Asaari, M.S.M., Suandi, S.A., Rosdi, B.A.: ‘Fusion of band limited phase only correlation and width centroid contour distance for finger based biometrics’, Expert Syst. Appl., 2014, 41, (7), pp. 33673382.
    34. 34)
      • 34. Zhang, N., Yang, J.: ‘K nearest neighbor based local sparse representation classifier’. Chinese IEEE Conf. Pattern Recognition (CCPR), Chongqing, China, October 2010, pp. 15.
    35. 35)
      • 35. Silverman, B.W., Jones, M.C.: ‘E. Fix and JL hodges (1951): ‘an important contribution to nonparametric discriminant analysis and density estimation: commentary on Fix and hodges (1951)’, Int. Stat. Rev., 1989, 3, pp. 233238.
    36. 36)
      • 36. Chaudhuri, B.B..: ‘A new definition of neighborhood of a point in multi-dimensional space’, Pattern Recognit. Lett., 1996, 17, (1), pp. 1117.
    37. 37)
      • 37. Yin, Y., Liu, L., Sun, X.: ‘SDUMLA-HMT: a multimodal biometric database’. Chinese Conf. Biometric Recognition, Berlin, Heidelberg, 2011, pp. 260268.
    38. 38)
      • 38. Kumar, A., Zhou, Y.: ‘Human identification using finger images’, IEEE Trans. Image Process., 2012, 21, (4), pp. 22282244.
    39. 39)
      • 39. Yang, W., Huang, X., Zhou, F., et al: ‘Comparative competitive coding for personal identification by using finger vein and finger dorsal texture fusion’, Inf. Sci., 2014, 268, pp. 2032.
    40. 40)
      • 40. Qian, Y., Ye, M., Zhou, J.: ‘Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features’, IEEE Trans. Geosci. Remote Sens., 2013, 51, (4), pp. 22762291.
    41. 41)
      • 41. Cohen, J.: ‘Weighted kappa: nominal scale agreement provision for scaled disagreement or partial credit’, Psychol. Bull., 1968, 70, (4), pp. 213220.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5130
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5130
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address