Deep learning approach to generate offline handwritten signatures based on online samples

Deep learning approach to generate offline handwritten signatures based on online samples

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reduced training sets are major problems typically found on the task of offline signature verification. To increase the number of samples, the use of synthetic signatures can be taken into account. In this work, a new method for the generation of synthetic offline signatures by using dynamic and static (real) ones is presented. The synthesis is here faced under the perspective of supervised training: the learning model is trained to perform the task of online-to-offline signature conversion. The approach is based on a deep convolutional neural network. The main goal is to enlarge offline training dataset in order to improve performance of the offline signature verification systems. For this purpose, a machine-oriented evaluation on the BiosecurID signature dataset is carried out. The use of synthetic samples (in the training phase) generated with the proposed method on a state-of-the-art classification system exhibits performance similar to those obtained using real signatures; moreover, the combination of real and synthetic signatures in the training set is also able to show improvements of the equal error rate.


    1. 1)
      • 1. Impedovo, D., Pirlo, G.: ‘Automatic signature verification: the state of the art’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2008, 38, (5), pp. 609635.
    2. 2)
      • 2. Hafemann, L.G., Sabourin, R., Oliveira, L.S.: ‘Offline handwritten signature verification – literature review’, arXiv preprint arXiv:1507.07909, 2015.
    3. 3)
      • 3. Cpałka, K., Zalasinski, M.: ‘On-line signature verification using vertical signature partitioning’, Expert Syst. Appl., 2014, 41, (9), pp. 41704180.
    4. 4)
      • 4. Viard-Gaudin, C., Lallican, P.M., Knerr, S., et al: ‘The IRESTE on/off (IRONOFF) dual handwriting database’. Proc. Fifth Int. Conf. Document Analysis and Recognition 1999 ICDAR'99, Bangalore, India, 1999, pp. 455458.
    5. 5)
      • 5. Herrero, J.G., Fierrez, J., Díaz, M.M., et al: ‘Synthetic generation of handwritten signatures based on spectral analysis’. Proc. SPIE – The Int. Society for Optical Engineering. Society of Photo-Optical Instrumentation Engineers, Orlando, USA, 2009.
    6. 6)
      • 6. Galbally, J., Plamondon, R., Fierrez, J., et al: ‘Synthetic on-line signature generation. Part i: methodology and algorithms’, Pattern Recognit., 2012, 45, (7), pp. 26102621.
    7. 7)
      • 7. Ferrer, M.A., Diaz-Cabrera, M., Morales, A.: ‘Synthetic off-line signature image generation’. Biometrics (ICB) 2013 Int. Conf. IEEE, Madrid, Spain, 2013, pp. 17.
    8. 8)
      • 8. Ferrer, M.A., Diaz-Cabrera, M., Morales, A., et al: ‘Realistic synthetic off-line signature generation based on synthetic on-line data’. 47th Int. Carnahan Conf. Security Technology (ICCST) 2013, Medellin, Colombia, 2013, pp. 16.
    9. 9)
      • 9. Diaz-Cabrera, M., Gomez-Barrero, M., Morales, A., et al: ‘Generation of enhanced synthetic off-line signatures based on real on-line data’. 2014 14th Int. Conf. IEEE Frontiers in Handwriting Recognition (ICFHR), Heraklion, Greece, 2014, pp. 482487.
    10. 10)
      • 10. Guest, R.M., Hurtado, O.M., Henniger, O.: ‘Assessment of methods for image recreation from signature time-series data’, IET Biometrics, 2013, 3, (3), pp. 159166.
    11. 11)
      • 11. Galbally, J., Diaz-Cabrera, M., Ferrer, M.A., et al: ‘On-line signature recognition through the combination of real dynamic data and synthetically generated static data’, Pattern Recognit., 2015, 48, (9), pp. 29212934.
    12. 12)
      • 12. Melo, V.K.S..L., Bezerra, B.L.D., do Nascimento, R.H.S.N.: ‘Datasets for handwritten signature verification: a survey and a new dataset, the RPPDI-SigData’, in Bezerra, B.L.D., Zanchettin, C., Toselli, A.H., et al (Eds.): ‘Handwriting: recognition, development and analysis’ (Nova Science Publishers, Nova Science Pub Inc, USA, 2017), chapter 14, pp. 345361.
    13. 13)
      • 13. Hanmandlu, M., Krishna, M.V.: ‘Rule based signature verification and forgery detection’, 2005.
    14. 14)
      • 14. Fierrez, J., Galbally, J., Ortega-Garcia, J., et al: ‘BiosecurID: a multimodal biometric database’, Pattern Anal. Appl., 2010, 13, (2), pp. 235246.
    15. 15)
      • 15. Garcia-Salicetti, S., Beumier, C., Chollet, G., et al: ‘BIOMET: a multimodal person authentication database including face, voice, fingerprint, hand and signature modalities’. Int. Conf. Audio- and Video-based Biometric Person Authentication, Guildford, UK, 2003, pp. 845853.
    16. 16)
      • 16. Dumas, B., Pugin, C., Hennebert, J., et al: ‘MyIDea multimodal biometrics database, description of acquisition protocols’. Proc. Third COST, Hatfield, UK, 2005, vol. 275, pp. 5962.
    17. 17)
      • 17. van den Heuvel, C.E., Franke, K., Vuurpijl, L.: ‘The ICDAR 2009 signature verification competition’. ICDAR2009 Proc., Barcelona, Spain, 2009.
    18. 18)
      • 18. Ahmad, S.M.S., Shakil, A., Ahmad, A.R., et al: ‘SIGMA – a Malaysian signatures’ database’. 2008 IEEE/ACS Int. Conf. Computer Systems and Applications, Doha, Qatar, 2008, pp. 919920.
    19. 19)
      • 19. Malik, M.I., Liwicki, M., Alewijnse, L., et al: ‘ICDAR 2013 competitions on signature verification and writer identification for on- and offline skilled forgeries (SigWiComp 2013)’. 2013 12th Int. Conf. Document Analysis and Recognition, Washington, USA, 2013, pp. 14771483.
    20. 20)
      • 20. Malik, M.I., Ahmed, S., Marcelli, A., et al: ‘ICDAR2015 competition on signature verification and writer identification for on-and off-line skilled forgeries (SigWIcomp2015)’. 2015 13th Int. Conf. IEEE Document Analysis and Recognition (ICDAR), Nancy, France, 2015, pp. 11861190.
    21. 21)
      • 21. Bresenham, J.E.: ‘Algorithm for computer control of a digital plotter’, IBM Syst. J., 1965, 4, (1), pp. 2530.
    22. 22)
      • 22. Pourshahabi, M.R., Sigari, M.H., Pourreza, H.R.: ‘Offline handwritten signature identification and verification using contourlet transform’. SOCPAR'09. Int. Conf. IEEE Soft Computing and Pattern Recognition 2009, Malacca, Malaysia, 2009, pp. 670673.
    23. 23)
      • 23. Hafemann, L.G., Sabourin, R., Oliveira, L.S.: ‘Learning features for offline handwritten signature verification using deep convolutional neural networks’, Pattern Recognit., 2017, 70, pp. 163176.
    24. 24)
      • 24. Long, J., Shelhamer, E., Darrell, T.: ‘Fully convolutional networks for semantic segmentation’. Proc. IEEE Conf. Computer Vision and Pattern Recognition, Boston, USA, 2015, pp. 34313440.
    25. 25)
      • 25. Simonyan, K., Zisserman, A.: ‘Very deep convolutional networks for large-scale image recognition’, arXiv preprint arXiv:1409.1556, 2014.
    26. 26)
      • 26. Springenberg, J.T., Dosovitskiy, A., Brox, T., et al: ‘Striving for simplicity: the all convolutional net’, arXiv preprint arXiv:1412.6806, 2014.
    27. 27)
      • 27. Glorot, X., Bengio, Y.: ‘Understanding the difficulty of training deep feedforward neural networks’. Proc. 13th Int. Conf. Artificial Intelligence and Statistics, 2010, pp. 249256.

Related content

This is a required field
Please enter a valid email address