http://iet.metastore.ingenta.com
1887

Deep finger texture learning for verifying people

Deep finger texture learning for verifying people

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Finger texture (FT) is currently attracting significant attention in the area of human recognition. FT covers the area between the lower knuckle of the finger and the upper phalanx before the fingerprint. It involves rich features which can be efficiently used as a biometric characteristic. In this study, the authors contribute to this growing area by proposing a new verification approach, i.e. deep FT learning. To the best of the authors’ knowledge, this is the first time that deep learning is employed for recognising people by using the FT characteristic. Four databases have been used to evaluate the proposed method: the Hong Kong Polytechnic University Contact-free 3D/2D (PolyU2D), Indian Institute of Technology Delhi (IITD), CASIA Blue spectral (CASIA-BLU) corresponding to spectral 460 nm and CASIA White spectral (CASIA-WHT) from the CASIA Multi-Spectral images database. The obtained results have shown superior performance compared with recent literature. The verification accuracies have attained 100, 98.65, 100 and 98% for the four databases of PolyU2D, IITD, CASIA-BLU and CASIA-WHT, respectively.

References

    1. 1)
      • 1. Liu, F., Liu, H., Gao, L.: ‘Hand recognition based on finger-contour and PSO’. Proc. of Int. Conf. on Intell. Comput. and Internet of Things, Harbin, China, 2015, pp. 3539.
    2. 2)
      • 2. Lu, Y., Yoon, S., Park, D.S.: ‘Finger vein identification system using two cameras’, Electron. Lett., 2014, 50, (22), pp. 15911593.
    3. 3)
      • 3. Kumar, A.: ‘Importance of being unique from finger dorsal patterns: exploring minor finger knuckle patterns in verifying human identities’, IEEE Tran. Info. Forensics Sec., 2014, 9, (8), pp. 12881298.
    4. 4)
      • 4. Al-Nima, R.R.O., Abdullah, M.A.M., Al-Kaltakchi, M.T.S., et al: ‘Finger texture biometric verification exploiting multi-scale sobel angles local binary pattern features and score-based fusion’, Elsevier, Digit. Signal Process., 2017, 70, pp. 178189.
    5. 5)
      • 5. Al-Nima, R.R.O., Dlay, S.S., Al-Sumaidaee, S.A.M., et al: ‘Robust feature extraction and salvage schemes for finger texture based biometrics’, IET Biometrics, 2017, 6, (2), pp. 4352.
    6. 6)
      • 6. Al-Nima, R.R.O., Dlay, S.S., Woo, W.L., et al: ‘Efficient finger segmentation robust to hand alignment in imaging with application to human verification’. 5th IEEE Int. Workshop on Biometrics and Forensics (IWBF), Coventry, UK, 2017, pp. 16.
    7. 7)
      • 7. Al-Nima, R.R.O., Dlay, S.S., Woo, W.L., et al: ‘A novel biometric approach to generate ROC curve from the probabilistic neural network’. 24th IEEE Signal Process. and Commun. Appl. Conf. (SIU), Zonguldak, Turkey, 2016, pp. 141144.
    8. 8)
      • 8. Al-Nima, R.R.O., Dlay, S.S., Woo, W.L., et al: ‘Human authentication with finger textures based on image feature enhancement’. The Second IET Int. Conf. Intell. Signal Process. (ISP), London, UK, 2015.
    9. 9)
      • 9. Bhaskar, B., Veluchamy, S.: ‘Hand based multibiometric authentication using local feature extraction’. Int. Conf. Recent Trends Inf. Technol. (ICRTIT), Chennai, India, 2014, pp. 15.
    10. 10)
      • 10. Michael, G.K.O., Connie, T., Jin, A.T.B.: ‘Robust palm print and knuckle print recognition system using a contactless approach’. 5th IEEE Conf. Ind. Electron. Appl. (ICIEA), Taichung, Taiwan, 2010, pp. 323329.
    11. 11)
      • 11. Ribaric, S., Fratric, I.: ‘A biometric identification system based on eigenpalm and eigenfinger features’, IEEE Trans. Pattern Anal. Mach. Intell., 2005, 27, (11), pp. 16981709.
    12. 12)
      • 12. Pavesic, N., Ribaric, S., Grad, B.: ‘Finger-based personal authentication: a comparison of feature-extraction methods based on principal component analysis, most discriminant features and regularised-direct linear discriminant analysis’, IET Signal Process., 2009, 3, (4), pp. 269281.
    13. 13)
      • 13. Kanhangad, V., Kumar, A., Zhang, D.: ‘A unified framework for contactless hand verification’, IEEE Trans. Inf. Forensics Sec., 2011, 6, (3), pp. 10141027.
    14. 14)
      • 14. Ferrer, M.A., Morales, A., Travieso, C.M., et al: ‘Low cost multimodal biometric identification system based on hand geometry, palm and finger print texture’. 41st Annual IEEE Int. Carnahan Conf. on Security Technol., Ottawa, Ont., Canada, 2007, pp. 5258.
    15. 15)
      • 15. Michael, G.K.O., Connie, T., Jin, A.T.B.: ‘An innovative contactless palm print and knuckle print recognition system’, Pattern Recog. Lett., 2010, 31, (12), pp. 17081719.
    16. 16)
      • 16. Yahyatabar, M.E., Ghasemi, J.: ‘Online signature verification using double-stage feature extraction modelled by dynamic feature stability experiment’, IET Biometrics, 2017, 6, (6), pp. 393401.
    17. 17)
      • 17. Cintas, C., Quinto-Sánchez, M., Acuña, V., et al: ‘Automatic ear detection and feature extraction using geometric morphometrics and convolutional neural networks’, IET Biometrics, 2017, 6, (3), pp. 211223.
    18. 18)
      • 18. Simón, M.O., Corneanu, C., Nasrollah, K., et al: ‘Improved RGB-D-T based face recognition’, IET Biometrics, 2016, 5, (4), pp. 297303.
    19. 19)
      • 19. Simo-Serra, E., Iizuka, S., Sasaki, K., et al: ‘Learning to simplify: fully convolutional networks for rough sketch cleanup’, ACM Trans. Graph. (TOG), 2016, 35, (4), p. 121.
    20. 20)
      • 20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ‘Imagenet classification with deep convolutional neural networks’, Adv. Neural info. Process. Syst., 2012, pp. 10971105.
    21. 21)
      • 21. Wu, J.: ‘Introduction to convolutional neural networks’, National Key Lab for Novel Softw. Technol., Nanjing University, China, 2017.
    22. 22)
      • 22. Stutz, D.: ‘Neural codes for image retrieval’. Proc. of the Comput. Vision-ECCV, Zurich, Switzerland, 2014, pp. 584599.
    23. 23)
      • 23. Al-Nima, R.R.O.: ‘Signal processing and machine learning techniques for human verification based on finger textures’, PhD thesis, School of Engineering, Newcastle University, 2017.
    24. 24)
      • 24. The Hong Kong polytechnic university contact-free 3D/2D hand images database version 1.0’, http://www.comp.polyu.edu.hk/csajaykr/myhome/database_request/3dhand/Hand3D.htm, Online Database.
    25. 25)
      • 25. IIT Delhi palmprint image database version 1.0’, http://www4.comp.polyu.edu.hk/csajaykr/IITD/Database_Palm.htm, Online Database.
    26. 26)
      • 26. Kumar, A.: ‘Incorporating cohort information for reliable palmprint authentication’. 6th IEEE Indian Conf. on Comput. Vision, Graphics & Image Process., ICVGIP'08., Bhubaneswar, India, 2008, pp. 583590.
    27. 27)
      • 27. CASIA-MS-PalmprintV1’, http://biometrics.idealtest.org/, Online Database.
    28. 28)
      • 28. Khan, Z., Mian, A., Hu, Y.: ‘Contour code: robust and efficient multispectral palmprint encoding for human recognition’. IEEE Int. Conf. Comput. Vision (ICCV), Barcelona, Spain, 2011, pp. 19351942.
    29. 29)
      • 29. Khan, Z., Shafait, F., Hu, Y., et al: ‘Multispectral palmprint encoding and recognition’, arXiv preprint arXiv:1402.2941, 2014.
    30. 30)
      • 30. Beale, M.H., Hagan, M.T., Demuth, H.B.: ‘Neural network toolbox user's guide’. The Mathworks Inc, 2017.
    31. 31)
      • 31. Petpon, A., Srisuk, S.: ‘Face recognition with local line binary pattern’. 5th Int. Conf. on Image and Graphics (ICIG), Xi'an, Shanxi, China, 2009, pp. 533539.
    32. 32)
      • 32. Shorrock, S., Yannopoulos, A., Dlay, S.S., et al: ‘Biometric verification of computer users with probabilistic and cascade forward neural networks’, Adv. Phys., Electron. Signal Process. Appl., 2000, pp. 267272.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5066
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5066
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address