http://iet.metastore.ingenta.com
1887

Towards application of dorsal hand vein recognition under uncontrolled environment based on biometric graph matching

Towards application of dorsal hand vein recognition under uncontrolled environment based on biometric graph matching

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Biometrics — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Dorsal hand vein recognition is a kind of biometric technique that has emerged in the last two decades. Owing to its safety, accuracy, and effectiveness, more and more researchers are involved in the study. Here, the authors presented a dorsal hand vein recognition system under uncontrolled environments based on biometric graph matching (BGM). Firstly, the authors establish two hand vein databases under natural indoor lighting conditions, i.e. XJTU-A and XJTU-B, with the hand not fixed. Secondly, the authors focus on optimising the image preprocessing steps in terms of region of interest (ROI) extraction, vein segmentation, and vein skeleton extraction. An ‘open’ operation with a large parameter is carried out to make the ROI extraction more abundant based on the maximum inscribed circle. In vein segmentation, the authors use the curvature point algorithm to better extract the vein skeleton. Thirdly, BGM algorithm is adopted to obtain distance measurements. The authors use single distance measure and multiple distance measures to obtain the threshold for recognition, respectively. Finally, the proposed dorsal hand vein recognition system is tested in three databases, and experiment results show that the improvement of the entire algorithms leads to high accuracy and strong robustness of the recognition system, whether under uncontrolled or controlled conditions.

References

    1. 1)
      • 1. Jia, W., Zhang, B., Lu, J.T., et al: ‘Palmprint recognition based on complete direction representation’, IEEE Trans. Image Process., 2017, 26, (9), pp. 44834498.
    2. 2)
      • 2. Jia, W., Hu, R.X., Lei, Y.K., et al: ‘Histogram of oriented lines for palmprint recognition’, IEEE Trans. Syst. Man Cybern. Syst., 2014, 44, (3), pp. 385395.
    3. 3)
      • 3. Luo, Y.T., Zhao, L.Y., Zhang, B., et al: ‘Local line directional pattern for palmprint recognition’, Pattern Recognit., 2016, 50, pp. 2644.
    4. 4)
      • 4. Cross, J.M., Smith, C.L.: ‘Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification’. 20th Annual 1995 Int. Carnahan Conf. on Security Technology, Surrey, England, 1995, pp. 2035.
    5. 5)
      • 5. Lin, C.L., Fan, K.C.: ‘Biometric verification using thermal images of palm-dorsa vein patterns’, IEEE Trans. Circuits Syst. Video Technol., 2004, 14, (2), pp. 199213.
    6. 6)
      • 6. Wang, Y., Xie, W., Yu, X., et al: ‘An automatic physical access control system based on hand vein biometric identification’, IEEE Trans. Consum. Electron., 2015, 61, (3), pp. 320327.
    7. 7)
      • 7. Wang, J., Wang, G.Q.: ‘Quality-specific hand vein recognition system’, IEEE Trans. Inf. Forensics Sec., 2017, 12, (11), pp. 25992610.
    8. 8)
      • 8. Shahin, M., Badawi, A., Kamel, M.: ‘Biometric authentication using fast correlation of near infrared hand vein patterns’, Int. J. Biomed. Sci., 2007, 2, (1–4), pp. 141148.
    9. 9)
      • 9. Zhong, D.X., Li, M.H., Shao, H.K., et al: ‘Palmprint and dorsal hand vein dualmodal biometrics’. 2018 IEEE Int. Conf. on Multimedia and Expo (ICME), San Diego, USA, 2018, pp. 16.
    10. 10)
      • 10. Lajevardi, S.M., Arakala, A., Davis, S., et al: ‘Hand vein authentication using biometric graph matching’, IET Biometrics, 2014, 3, (4), pp. 302313.
    11. 11)
      • 11. Ferrer, M.A., Morales, A., Ortega, L.: ‘Infrared hand dorsum images for identification’, Electron. Lett., 2009, 45, (6), pp. 306308.
    12. 12)
      • 12. MacGregor, P., Welford, R.: ‘Veincheck: imaging for security and personnel identification’, 1991.
    13. 13)
      • 13. Vasagiri, K., Parvata, S.R.: ‘Dorsal hand vein biometric authentication using complex walsh transform’. Proc. of the 2016 2nd Int. Conf. on Applied and Theoretical Computing and Communication Technology, SJB Inst. Technol., Bengaluru, India, 2016, pp. 533537.
    14. 14)
      • 14. Belean, B., Streza, M., Crisan, S., et al: ‘Dorsal hand vein pattern analysis and neural networks for biometric authentication’, Stud. Inf. Control, 2017, 26, (3), pp. 305314.
    15. 15)
      • 15. Chuang, S.J.: ‘Vein recognition based on minutiae features in the dorsal venous network of the hand’, Signal Image Video Process., 2018, 12, (3), pp. 573581.
    16. 16)
      • 16. Wang, Y.D., Zheng, X.: ‘Cross-device hand vein recognition based on improved sift’, Int. J. Wavelets Multiresolution Inf. Process., 2018, 16, (2), p. 17.
    17. 17)
      • 17. Wan, H.P., Chen, L., Song, H., et al: ‘Dorsal hand vein recognition based on convolutional neural networks’. 2017 IEEE Int. Conf. on Bioinformatics and Biomedicine, Kansas City, MI, 2017, pp. 12151221.
    18. 18)
      • 18. Qiu, X.W., Kang, W.X., Tian, S.P., et al: ‘Finger vein presentation attack detection using total variation decomposition’, IEEE Trans. Inf. Forensics Sec., 2018, 13, (2), pp. 465477.
    19. 19)
      • 19. Kolda, L., Krejcar, O.: ‘Biometrie hand vein estimation using bloodstream filtration and fuzzy E-means’. 2017 IEEE Int. Conf. on Fuzzy Systems (FUZZ-IEEE), Naples, Italy, 2017, pp. 16.
    20. 20)
      • 20. Sezgin, M., Sankur, B.: ‘Survey over image thresholding techniques and quantitative performance evaluation’, J. Electron. Imaging, 2004, 13, (1), pp. 146168.
    21. 21)
      • 21. Wu, W.H., Lu, F.Y., Cheng, G.J., et al: ‘A vein based biometric experiment and some new developments’. 2012 Third Global Congress on Intelligent Systems, Wuhan, People's Republic of China, 2012, pp. 131135.
    22. 22)
      • 22. Ratha, N.K., Connell, J.H., Bolle, R.M.: ‘Enhancing security and privacy in biometrics-based authentication systems’, IBM Syst. J., 2001, 40, (3), pp. 614634.
    23. 23)
      • 23. Riesen, K., Bunke, H.: ‘Approximate graph edit distance computation by means of bipartite graph matching’, Image Vis. Comput., 2009, 27, (7), pp. 950959.
    24. 24)
      • 24. Horadam, K.J., Davis, S.A., Arakala, A., et al: ‘Fingerprints as spatial graphs: nodes and edges’. Proc. of the 2011 Int. Conf. on Digital Image Computing: Techniques and Applications (DICTA 2011), Noosa, QLD, Australia, 2011, pp. 400405.
    25. 25)
      • 25. Arakala, A., Davis, S.A., Horadam, K.J.: ‘Retina features based on vessel graph substructures’. 2011 Int. Joint Conf. on Biometrics (IJCB), Washington, DC, USA, 2011, pp. 16.
    26. 26)
      • 26. Bougleux, S., Brun, L., Carletti, V., et al: ‘Graph edit distance as a quadratic assignment problem’, Pattern Recognit. Lett., 2017, 87, pp. 3846.
    27. 27)
      • 27. Lajevardi, S.M., Arakala, A., Davis, S.A., et al: ‘Retina verification system based on biometric graph matching’, IEEE Trans. Image Process., 2013, 22, (9), pp. 36253635.
    28. 28)
      • 28. Gutschoven, B., Verlinde, P.: ‘Multi-modal identity verification using support vector machines (SVM)’. Proc. of the Third Int. Conf. on Information Fusion (Cat. No.00EX438), Paris, France, 2000, pp. 16.
    29. 29)
      • 29. Patil, I., Bhilare, S., Kanhangad, V.: ‘Assessing vulnerability of dorsal hand-vein verification system to spoofing attacks using smartphone camera’. 2016 IEEE Int. Conf. on Identity, Security and Behavior Analysis, Tohoku University, Sendai, Japan, 2016, pp. 16.
    30. 30)
      • 30. Ma, Z.C., Fang, L.Y., Duan, J.H., et al: ‘Personal identification based on finger vein and contour point clouds matching’. 2016 IEEE Int. Conf. on Mechatronics and Automation, Harbin, People's Republic of China, 2016, pp. 19831988.
    31. 31)
      • 31. Aglio-Caballero, A., Rios-Sanchez, B., Sanchez-Avila, C., et al: ‘Analysis of local binary patterns and uniform local binary patterns for palm vein biometric recognition’. 2017 Int. Carnahan Conf. on Security Technology (ICCST), Madrid, Spain, 2017, pp. 16.
    32. 32)
      • 32. Yuan, C.S., Sun, X.M.: ‘Fingerprint liveness detection adapted to different fingerprint sensors based on multiscale wavelet transform and rotation-invarient local binary pattern’, J. Internet Technol., 2018, 19, (1), pp. 9198.
    33. 33)
      • 33. Benzaoui, A., Kheider, A., Boukrouche, A.: ‘Ear description and recognition using ELBP and wavelets’. 2015 Int. Conf. on Applied Research in Computer Science and Engineering, Univ Antonine, Beirut, Lebanon, 2015, pp. 16.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-bmt.2018.5056
Loading

Related content

content/journals/10.1049/iet-bmt.2018.5056
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address